Phase influence of combined rotational and transverse vibrations on the structural response

The planar dynamic response of a cantilever metallic beam structure under combined harmonic base excitations (consisting of in-plane transverse and rotation about the out-of-plane transverse axis) was investigated experimentally. The important effect of the phase angle between the two simultaneous b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2018-02, Vol.100, p.371-383
Hauptverfasser: Habtour, Ed, Sridharan, Raman, Dasgupta, Abhijit, Robeson, Mark, Vantadori, Sabrina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue
container_start_page 371
container_title Mechanical systems and signal processing
container_volume 100
creator Habtour, Ed
Sridharan, Raman
Dasgupta, Abhijit
Robeson, Mark
Vantadori, Sabrina
description The planar dynamic response of a cantilever metallic beam structure under combined harmonic base excitations (consisting of in-plane transverse and rotation about the out-of-plane transverse axis) was investigated experimentally. The important effect of the phase angle between the two simultaneous biaxial excitations on the beam tip displacement was demonstrated. The experiments were performed using a unique six degree-of-freedom (6-DoF) electrodynamic shaker with high control accuracy. The results showed that the beam tip displacement at the first flexural mode was amplified when the phase angle between the rotational and translational base excitations was increased. The beam nonlinear stiffness, on the other hand, simultaneously: (i) decreased due to fatigue damage accumulation, and (ii) increased due to an increase in the phase angle. The results were compared to the uniaxial excitation technique, where the principle of superposition was applied (mathematical addition of the structural response for each uniaxial excitation). The principle of superposition was shown to overestimate the structural response for low phase angles. Thus, the application of the superposition vibration testing as a substitute for multiaxial vibration testing may lead to over-conservatism and erroneous dynamic and reliability predictions.
doi_str_mv 10.1016/j.ymssp.2017.07.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966855611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327017304065</els_id><sourcerecordid>1966855611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-d6e7438e085f58bf04d4a2f5d2642d8468102624143ba94f8e016ac77aa8a1823</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AjcB161JmqbpwoUMvmBAF7pyEdI8mJSZpibpwPx70xnXwoW7ON853HsAuMWoxAiz-7487GIcS4JwU6I8lJyBBUYtKzDB7BwsEOe8qEiDLsFVjD1CqKWILcD3x0ZGA91gt5MZlIHeQuV3nRuMhsEnmZwf5BbKQcMU5BD3JmR-77pwlCL0A0wbA2MKk0pTyGwwccyKuQYXVm6jufnbS_D1_PS5ei3W7y9vq8d1oaoKp0Iz09CKG8RrW_POIqqpJLbWhFGiOWUcI8IIxbTqZEttJjGTqmmk5BJzUi3B3Sl3DP5nMjGJ3k8hXx0Fbhnjdc0wzlR1olTwMQZjxRjcToaDwEjMLYpeHFsUc4sC5aFz9sPJZfIDe2eCiMrNRWkXjEpCe_ev_xdqjX02</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966855611</pqid></control><display><type>article</type><title>Phase influence of combined rotational and transverse vibrations on the structural response</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Habtour, Ed ; Sridharan, Raman ; Dasgupta, Abhijit ; Robeson, Mark ; Vantadori, Sabrina</creator><creatorcontrib>Habtour, Ed ; Sridharan, Raman ; Dasgupta, Abhijit ; Robeson, Mark ; Vantadori, Sabrina</creatorcontrib><description>The planar dynamic response of a cantilever metallic beam structure under combined harmonic base excitations (consisting of in-plane transverse and rotation about the out-of-plane transverse axis) was investigated experimentally. The important effect of the phase angle between the two simultaneous biaxial excitations on the beam tip displacement was demonstrated. The experiments were performed using a unique six degree-of-freedom (6-DoF) electrodynamic shaker with high control accuracy. The results showed that the beam tip displacement at the first flexural mode was amplified when the phase angle between the rotational and translational base excitations was increased. The beam nonlinear stiffness, on the other hand, simultaneously: (i) decreased due to fatigue damage accumulation, and (ii) increased due to an increase in the phase angle. The results were compared to the uniaxial excitation technique, where the principle of superposition was applied (mathematical addition of the structural response for each uniaxial excitation). The principle of superposition was shown to overestimate the structural response for low phase angles. Thus, the application of the superposition vibration testing as a substitute for multiaxial vibration testing may lead to over-conservatism and erroneous dynamic and reliability predictions.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2017.07.042</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Cantilever beams ; Crack propagation ; Damage accumulation ; Damage precursor ; Degrees of freedom ; Dynamic response ; Excitation ; Fatigue ; Fatigue failure ; Metal fatigue ; Multiaxial ; Nonlinear dynamic ; Phase ; Phase shift ; Reliability ; Stiffness ; Structural response ; Superposition (mathematics) ; Transverse oscillation ; Vibration tests</subject><ispartof>Mechanical systems and signal processing, 2018-02, Vol.100, p.371-383</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Feb 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-d6e7438e085f58bf04d4a2f5d2642d8468102624143ba94f8e016ac77aa8a1823</citedby><cites>FETCH-LOGICAL-c331t-d6e7438e085f58bf04d4a2f5d2642d8468102624143ba94f8e016ac77aa8a1823</cites><orcidid>0000-0002-9047-9187 ; 0000-0002-1904-9301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2017.07.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Habtour, Ed</creatorcontrib><creatorcontrib>Sridharan, Raman</creatorcontrib><creatorcontrib>Dasgupta, Abhijit</creatorcontrib><creatorcontrib>Robeson, Mark</creatorcontrib><creatorcontrib>Vantadori, Sabrina</creatorcontrib><title>Phase influence of combined rotational and transverse vibrations on the structural response</title><title>Mechanical systems and signal processing</title><description>The planar dynamic response of a cantilever metallic beam structure under combined harmonic base excitations (consisting of in-plane transverse and rotation about the out-of-plane transverse axis) was investigated experimentally. The important effect of the phase angle between the two simultaneous biaxial excitations on the beam tip displacement was demonstrated. The experiments were performed using a unique six degree-of-freedom (6-DoF) electrodynamic shaker with high control accuracy. The results showed that the beam tip displacement at the first flexural mode was amplified when the phase angle between the rotational and translational base excitations was increased. The beam nonlinear stiffness, on the other hand, simultaneously: (i) decreased due to fatigue damage accumulation, and (ii) increased due to an increase in the phase angle. The results were compared to the uniaxial excitation technique, where the principle of superposition was applied (mathematical addition of the structural response for each uniaxial excitation). The principle of superposition was shown to overestimate the structural response for low phase angles. Thus, the application of the superposition vibration testing as a substitute for multiaxial vibration testing may lead to over-conservatism and erroneous dynamic and reliability predictions.</description><subject>Cantilever beams</subject><subject>Crack propagation</subject><subject>Damage accumulation</subject><subject>Damage precursor</subject><subject>Degrees of freedom</subject><subject>Dynamic response</subject><subject>Excitation</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Metal fatigue</subject><subject>Multiaxial</subject><subject>Nonlinear dynamic</subject><subject>Phase</subject><subject>Phase shift</subject><subject>Reliability</subject><subject>Stiffness</subject><subject>Structural response</subject><subject>Superposition (mathematics)</subject><subject>Transverse oscillation</subject><subject>Vibration tests</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AjcB161JmqbpwoUMvmBAF7pyEdI8mJSZpibpwPx70xnXwoW7ON853HsAuMWoxAiz-7487GIcS4JwU6I8lJyBBUYtKzDB7BwsEOe8qEiDLsFVjD1CqKWILcD3x0ZGA91gt5MZlIHeQuV3nRuMhsEnmZwf5BbKQcMU5BD3JmR-77pwlCL0A0wbA2MKk0pTyGwwccyKuQYXVm6jufnbS_D1_PS5ei3W7y9vq8d1oaoKp0Iz09CKG8RrW_POIqqpJLbWhFGiOWUcI8IIxbTqZEttJjGTqmmk5BJzUi3B3Sl3DP5nMjGJ3k8hXx0Fbhnjdc0wzlR1olTwMQZjxRjcToaDwEjMLYpeHFsUc4sC5aFz9sPJZfIDe2eCiMrNRWkXjEpCe_ev_xdqjX02</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Habtour, Ed</creator><creator>Sridharan, Raman</creator><creator>Dasgupta, Abhijit</creator><creator>Robeson, Mark</creator><creator>Vantadori, Sabrina</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9047-9187</orcidid><orcidid>https://orcid.org/0000-0002-1904-9301</orcidid></search><sort><creationdate>20180201</creationdate><title>Phase influence of combined rotational and transverse vibrations on the structural response</title><author>Habtour, Ed ; Sridharan, Raman ; Dasgupta, Abhijit ; Robeson, Mark ; Vantadori, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-d6e7438e085f58bf04d4a2f5d2642d8468102624143ba94f8e016ac77aa8a1823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cantilever beams</topic><topic>Crack propagation</topic><topic>Damage accumulation</topic><topic>Damage precursor</topic><topic>Degrees of freedom</topic><topic>Dynamic response</topic><topic>Excitation</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Metal fatigue</topic><topic>Multiaxial</topic><topic>Nonlinear dynamic</topic><topic>Phase</topic><topic>Phase shift</topic><topic>Reliability</topic><topic>Stiffness</topic><topic>Structural response</topic><topic>Superposition (mathematics)</topic><topic>Transverse oscillation</topic><topic>Vibration tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habtour, Ed</creatorcontrib><creatorcontrib>Sridharan, Raman</creatorcontrib><creatorcontrib>Dasgupta, Abhijit</creatorcontrib><creatorcontrib>Robeson, Mark</creatorcontrib><creatorcontrib>Vantadori, Sabrina</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habtour, Ed</au><au>Sridharan, Raman</au><au>Dasgupta, Abhijit</au><au>Robeson, Mark</au><au>Vantadori, Sabrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase influence of combined rotational and transverse vibrations on the structural response</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>100</volume><spage>371</spage><epage>383</epage><pages>371-383</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>The planar dynamic response of a cantilever metallic beam structure under combined harmonic base excitations (consisting of in-plane transverse and rotation about the out-of-plane transverse axis) was investigated experimentally. The important effect of the phase angle between the two simultaneous biaxial excitations on the beam tip displacement was demonstrated. The experiments were performed using a unique six degree-of-freedom (6-DoF) electrodynamic shaker with high control accuracy. The results showed that the beam tip displacement at the first flexural mode was amplified when the phase angle between the rotational and translational base excitations was increased. The beam nonlinear stiffness, on the other hand, simultaneously: (i) decreased due to fatigue damage accumulation, and (ii) increased due to an increase in the phase angle. The results were compared to the uniaxial excitation technique, where the principle of superposition was applied (mathematical addition of the structural response for each uniaxial excitation). The principle of superposition was shown to overestimate the structural response for low phase angles. Thus, the application of the superposition vibration testing as a substitute for multiaxial vibration testing may lead to over-conservatism and erroneous dynamic and reliability predictions.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2017.07.042</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9047-9187</orcidid><orcidid>https://orcid.org/0000-0002-1904-9301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2018-02, Vol.100, p.371-383
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_1966855611
source ScienceDirect Journals (5 years ago - present)
subjects Cantilever beams
Crack propagation
Damage accumulation
Damage precursor
Degrees of freedom
Dynamic response
Excitation
Fatigue
Fatigue failure
Metal fatigue
Multiaxial
Nonlinear dynamic
Phase
Phase shift
Reliability
Stiffness
Structural response
Superposition (mathematics)
Transverse oscillation
Vibration tests
title Phase influence of combined rotational and transverse vibrations on the structural response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20influence%20of%20combined%20rotational%20and%20transverse%20vibrations%20on%20the%20structural%20response&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Habtour,%20Ed&rft.date=2018-02-01&rft.volume=100&rft.spage=371&rft.epage=383&rft.pages=371-383&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2017.07.042&rft_dat=%3Cproquest_cross%3E1966855611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966855611&rft_id=info:pmid/&rft_els_id=S0888327017304065&rfr_iscdi=true