Viscoelastic flow simulations in random porous media

We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid interface is implemented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2017-10, Vol.248, p.50-61
Hauptverfasser: De, S., Kuipers, J.A.M., Peters, E.A.J.F., Padding, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue
container_start_page 50
container_title Journal of non-Newtonian fluid mechanics
container_volume 248
creator De, S.
Kuipers, J.A.M.
Peters, E.A.J.F.
Padding, J.T.
description We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid interface is implemented using a second order finite volume immersed boundary (FVM-IBM) methodology [1]. The viscoelastic fluid is modeled using a FENE-P type model. The simulations reveal a transition from a laminar regime to a nonstationary regime with increasing viscoelasticity. We find an increased flow resistance with increase in Deborah number even though shear rheology is shear thinning nature of the fluid. By choosing a length scale based on the permeability of the porous media, a Deborah number can be defined, such that a universal curve for the flow transition is obtained. A study of the flow topology shows how in such disordered porous media shear, extensional and rotational contributions to the flow evolve with increased viscoelasticity. We correlate the flow topology with the dissipation function distribution across the porous domain, and find that most of the mechanical energy is dissipated in shear dominated regimes instead, even at high viscoelasticity.
doi_str_mv 10.1016/j.jnnfm.2017.08.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966852070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966852070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f38f555b714888d9df705395264d7949c0b32b27982862586e2116514420bec63</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoOI7-AjcF1633Jk1yu5TBFwy4UbehjwRS2mZMWsR_b8fxbM7mcD74GLtFKBBQ3fdFP01uLDigLoAKQDhjGyQtcq4EnrMNCK1z4FJfsquUelgjhdqw8tOnNtihTrNvMzeE7yz5cRnq2YcpZX7KYj11YcwOIYYlZaPtfH3NLlw9JHvz31v28fT4vnvJ92_Pr7uHfd4Kojl3gpyUstFYElFXdU6v0EpyVXa6KqsWGsEbrivipLgkZTmikliWHBrbKrFld6ffQwxfi02z6cMSpxVpsFKKJAcN60qcVm0MKUXrzCH6sY4_BsEc9Zje_OkxRz0GyKx6xC84AFfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966852070</pqid></control><display><type>article</type><title>Viscoelastic flow simulations in random porous media</title><source>Elsevier ScienceDirect Journals Complete</source><creator>De, S. ; Kuipers, J.A.M. ; Peters, E.A.J.F. ; Padding, J.T.</creator><creatorcontrib>De, S. ; Kuipers, J.A.M. ; Peters, E.A.J.F. ; Padding, J.T.</creatorcontrib><description>We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid interface is implemented using a second order finite volume immersed boundary (FVM-IBM) methodology [1]. The viscoelastic fluid is modeled using a FENE-P type model. The simulations reveal a transition from a laminar regime to a nonstationary regime with increasing viscoelasticity. We find an increased flow resistance with increase in Deborah number even though shear rheology is shear thinning nature of the fluid. By choosing a length scale based on the permeability of the porous media, a Deborah number can be defined, such that a universal curve for the flow transition is obtained. A study of the flow topology shows how in such disordered porous media shear, extensional and rotational contributions to the flow evolve with increased viscoelasticity. We correlate the flow topology with the dissipation function distribution across the porous domain, and find that most of the mechanical energy is dissipated in shear dominated regimes instead, even at high viscoelasticity.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2017.08.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Computer simulation ; Deborah number ; Dissipation ; Flow resistance ; Fluid dynamics ; Fluid flow ; Permeability ; Porous materials ; Porous media ; Rheological properties ; Rheology ; Shear ; Shear thinning (liquids) ; Topology ; Viscoelastic fluids ; Viscoelasticity</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2017-10, Vol.248, p.50-61</ispartof><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f38f555b714888d9df705395264d7949c0b32b27982862586e2116514420bec63</citedby><cites>FETCH-LOGICAL-c388t-f38f555b714888d9df705395264d7949c0b32b27982862586e2116514420bec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>De, S.</creatorcontrib><creatorcontrib>Kuipers, J.A.M.</creatorcontrib><creatorcontrib>Peters, E.A.J.F.</creatorcontrib><creatorcontrib>Padding, J.T.</creatorcontrib><title>Viscoelastic flow simulations in random porous media</title><title>Journal of non-Newtonian fluid mechanics</title><description>We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid interface is implemented using a second order finite volume immersed boundary (FVM-IBM) methodology [1]. The viscoelastic fluid is modeled using a FENE-P type model. The simulations reveal a transition from a laminar regime to a nonstationary regime with increasing viscoelasticity. We find an increased flow resistance with increase in Deborah number even though shear rheology is shear thinning nature of the fluid. By choosing a length scale based on the permeability of the porous media, a Deborah number can be defined, such that a universal curve for the flow transition is obtained. A study of the flow topology shows how in such disordered porous media shear, extensional and rotational contributions to the flow evolve with increased viscoelasticity. We correlate the flow topology with the dissipation function distribution across the porous domain, and find that most of the mechanical energy is dissipated in shear dominated regimes instead, even at high viscoelasticity.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deborah number</subject><subject>Dissipation</subject><subject>Flow resistance</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Permeability</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear thinning (liquids)</subject><subject>Topology</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAUhYMoOI7-AjcF1633Jk1yu5TBFwy4UbehjwRS2mZMWsR_b8fxbM7mcD74GLtFKBBQ3fdFP01uLDigLoAKQDhjGyQtcq4EnrMNCK1z4FJfsquUelgjhdqw8tOnNtihTrNvMzeE7yz5cRnq2YcpZX7KYj11YcwOIYYlZaPtfH3NLlw9JHvz31v28fT4vnvJ92_Pr7uHfd4Kojl3gpyUstFYElFXdU6v0EpyVXa6KqsWGsEbrivipLgkZTmikliWHBrbKrFld6ffQwxfi02z6cMSpxVpsFKKJAcN60qcVm0MKUXrzCH6sY4_BsEc9Zje_OkxRz0GyKx6xC84AFfs</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>De, S.</creator><creator>Kuipers, J.A.M.</creator><creator>Peters, E.A.J.F.</creator><creator>Padding, J.T.</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201710</creationdate><title>Viscoelastic flow simulations in random porous media</title><author>De, S. ; Kuipers, J.A.M. ; Peters, E.A.J.F. ; Padding, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f38f555b714888d9df705395264d7949c0b32b27982862586e2116514420bec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deborah number</topic><topic>Dissipation</topic><topic>Flow resistance</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Permeability</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear thinning (liquids)</topic><topic>Topology</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, S.</creatorcontrib><creatorcontrib>Kuipers, J.A.M.</creatorcontrib><creatorcontrib>Peters, E.A.J.F.</creatorcontrib><creatorcontrib>Padding, J.T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, S.</au><au>Kuipers, J.A.M.</au><au>Peters, E.A.J.F.</au><au>Padding, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic flow simulations in random porous media</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2017-10</date><risdate>2017</risdate><volume>248</volume><spage>50</spage><epage>61</epage><pages>50-61</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid interface is implemented using a second order finite volume immersed boundary (FVM-IBM) methodology [1]. The viscoelastic fluid is modeled using a FENE-P type model. The simulations reveal a transition from a laminar regime to a nonstationary regime with increasing viscoelasticity. We find an increased flow resistance with increase in Deborah number even though shear rheology is shear thinning nature of the fluid. By choosing a length scale based on the permeability of the porous media, a Deborah number can be defined, such that a universal curve for the flow transition is obtained. A study of the flow topology shows how in such disordered porous media shear, extensional and rotational contributions to the flow evolve with increased viscoelasticity. We correlate the flow topology with the dissipation function distribution across the porous domain, and find that most of the mechanical energy is dissipated in shear dominated regimes instead, even at high viscoelasticity.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.jnnfm.2017.08.010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2017-10, Vol.248, p.50-61
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_journals_1966852070
source Elsevier ScienceDirect Journals Complete
subjects Boundary conditions
Computational fluid dynamics
Computer simulation
Deborah number
Dissipation
Flow resistance
Fluid dynamics
Fluid flow
Permeability
Porous materials
Porous media
Rheological properties
Rheology
Shear
Shear thinning (liquids)
Topology
Viscoelastic fluids
Viscoelasticity
title Viscoelastic flow simulations in random porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20flow%20simulations%20in%20random%20porous%20media&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=De,%20S.&rft.date=2017-10&rft.volume=248&rft.spage=50&rft.epage=61&rft.pages=50-61&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2017.08.010&rft_dat=%3Cproquest_cross%3E1966852070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966852070&rft_id=info:pmid/&rfr_iscdi=true