Global well-posedness of smooth solution to the supercritical SQG equation with large dispersive forcing and small viscosity
It is known that global well-posedness for the supercritical SQG equation remains open, even the smooth data. In this paper, motivated by the recent work Cannone et al. (2013), we provide a simpler approach to the proof of global well-posedness for the supercritical SQG equation with large dispersiv...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2017-11, Vol.164, p.54-66 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | |
container_start_page | 54 |
container_title | Nonlinear analysis |
container_volume | 164 |
creator | Wan, Renhui Chen, Jiecheng |
description | It is known that global well-posedness for the supercritical SQG equation remains open, even the smooth data. In this paper, motivated by the recent work Cannone et al. (2013), we provide a simpler approach to the proof of global well-posedness for the supercritical SQG equation with large dispersive forcing, even with small viscosity. As an application, we prove global well-posedness for the 2D dissipative Boussinesq equations with small viscosity and large background data. |
doi_str_mv | 10.1016/j.na.2017.08.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966852047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X17302171</els_id><sourcerecordid>1966852047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-2351cc8302db896ececf2c79f9f593b2cd03f92fd76ba834edc117b6dc7e1b453</originalsourceid><addsrcrecordid>eNp1kM9LHTEUhYNU8FXduwx0PdP8eJOZcVekfRaEUqrgLmSSG80jTp65mSeCf7yxr9uu7ub7zrkcQi44aznj6uu2nU0rGO9bNrSMDUdkxYdeNp3g3SeyYlKJplur-xPyGXHLWCWlWpG3TUyTifQFYmx2CcHNgEiTp_iUUnmkmOJSQpppSbQ8AsVlB9nmUIKt2p_fGwrPi_lLvITKR5MfgLqAFcOwB-pTtmF-oGZ2NdPESPcBbcJQXs_IsTcR4fzfPSV3P77fXl03N782P6--3TRWClEaITtu7SCZcNMwKrBgvbD96EffjXIS1jHpR-FdryYzyDU4y3k_KWd74NO6k6fkyyF3l9PzAlj0Ni15rpWaj0oNnWDrvlLsQNmcEDN4vcvhyeRXzZn-2Fhv9Wz0x8aaDbpuXJXLgwL1-32ArNEGmC24kMEW7VL4v_wOPvOGwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966852047</pqid></control><display><type>article</type><title>Global well-posedness of smooth solution to the supercritical SQG equation with large dispersive forcing and small viscosity</title><source>Elsevier ScienceDirect Journals</source><creator>Wan, Renhui ; Chen, Jiecheng</creator><creatorcontrib>Wan, Renhui ; Chen, Jiecheng</creatorcontrib><description>It is known that global well-posedness for the supercritical SQG equation remains open, even the smooth data. In this paper, motivated by the recent work Cannone et al. (2013), we provide a simpler approach to the proof of global well-posedness for the supercritical SQG equation with large dispersive forcing, even with small viscosity. As an application, we prove global well-posedness for the 2D dissipative Boussinesq equations with small viscosity and large background data.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2017.08.008</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Boussinesq equations ; Dispersion ; Large dispersive forcing ; Nonlinear equations ; Small viscosity ; Supercritical SQG equation ; Viscosity ; Well posed problems</subject><ispartof>Nonlinear analysis, 2017-11, Vol.164, p.54-66</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-2351cc8302db896ececf2c79f9f593b2cd03f92fd76ba834edc117b6dc7e1b453</citedby><cites>FETCH-LOGICAL-c322t-2351cc8302db896ececf2c79f9f593b2cd03f92fd76ba834edc117b6dc7e1b453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X17302171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wan, Renhui</creatorcontrib><creatorcontrib>Chen, Jiecheng</creatorcontrib><title>Global well-posedness of smooth solution to the supercritical SQG equation with large dispersive forcing and small viscosity</title><title>Nonlinear analysis</title><description>It is known that global well-posedness for the supercritical SQG equation remains open, even the smooth data. In this paper, motivated by the recent work Cannone et al. (2013), we provide a simpler approach to the proof of global well-posedness for the supercritical SQG equation with large dispersive forcing, even with small viscosity. As an application, we prove global well-posedness for the 2D dissipative Boussinesq equations with small viscosity and large background data.</description><subject>Boussinesq equations</subject><subject>Dispersion</subject><subject>Large dispersive forcing</subject><subject>Nonlinear equations</subject><subject>Small viscosity</subject><subject>Supercritical SQG equation</subject><subject>Viscosity</subject><subject>Well posed problems</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LHTEUhYNU8FXduwx0PdP8eJOZcVekfRaEUqrgLmSSG80jTp65mSeCf7yxr9uu7ub7zrkcQi44aznj6uu2nU0rGO9bNrSMDUdkxYdeNp3g3SeyYlKJplur-xPyGXHLWCWlWpG3TUyTifQFYmx2CcHNgEiTp_iUUnmkmOJSQpppSbQ8AsVlB9nmUIKt2p_fGwrPi_lLvITKR5MfgLqAFcOwB-pTtmF-oGZ2NdPESPcBbcJQXs_IsTcR4fzfPSV3P77fXl03N782P6--3TRWClEaITtu7SCZcNMwKrBgvbD96EffjXIS1jHpR-FdryYzyDU4y3k_KWd74NO6k6fkyyF3l9PzAlj0Ni15rpWaj0oNnWDrvlLsQNmcEDN4vcvhyeRXzZn-2Fhv9Wz0x8aaDbpuXJXLgwL1-32ArNEGmC24kMEW7VL4v_wOPvOGwA</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Wan, Renhui</creator><creator>Chen, Jiecheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201711</creationdate><title>Global well-posedness of smooth solution to the supercritical SQG equation with large dispersive forcing and small viscosity</title><author>Wan, Renhui ; Chen, Jiecheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-2351cc8302db896ececf2c79f9f593b2cd03f92fd76ba834edc117b6dc7e1b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boussinesq equations</topic><topic>Dispersion</topic><topic>Large dispersive forcing</topic><topic>Nonlinear equations</topic><topic>Small viscosity</topic><topic>Supercritical SQG equation</topic><topic>Viscosity</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Renhui</creatorcontrib><creatorcontrib>Chen, Jiecheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Renhui</au><au>Chen, Jiecheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global well-posedness of smooth solution to the supercritical SQG equation with large dispersive forcing and small viscosity</atitle><jtitle>Nonlinear analysis</jtitle><date>2017-11</date><risdate>2017</risdate><volume>164</volume><spage>54</spage><epage>66</epage><pages>54-66</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>It is known that global well-posedness for the supercritical SQG equation remains open, even the smooth data. In this paper, motivated by the recent work Cannone et al. (2013), we provide a simpler approach to the proof of global well-posedness for the supercritical SQG equation with large dispersive forcing, even with small viscosity. As an application, we prove global well-posedness for the 2D dissipative Boussinesq equations with small viscosity and large background data.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2017.08.008</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2017-11, Vol.164, p.54-66 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_1966852047 |
source | Elsevier ScienceDirect Journals |
subjects | Boussinesq equations Dispersion Large dispersive forcing Nonlinear equations Small viscosity Supercritical SQG equation Viscosity Well posed problems |
title | Global well-posedness of smooth solution to the supercritical SQG equation with large dispersive forcing and small viscosity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20well-posedness%20of%20smooth%20solution%20to%20the%20supercritical%20SQG%20equation%20with%20large%20dispersive%20forcing%20and%20small%20viscosity&rft.jtitle=Nonlinear%20analysis&rft.au=Wan,%20Renhui&rft.date=2017-11&rft.volume=164&rft.spage=54&rft.epage=66&rft.pages=54-66&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2017.08.008&rft_dat=%3Cproquest_cross%3E1966852047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966852047&rft_id=info:pmid/&rft_els_id=S0362546X17302171&rfr_iscdi=true |