Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations

ABSTRACT Block copolymers containing both insulating and conducting segments have been shown to exhibit improved charge transport properties and air stability. Nevertheless, their syntheses are challenging, relying on multiple post‐polymerization functionalization reactions and purifications. A simp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2018-01, Vol.56 (1), p.132-137
Hauptverfasser: Souther, Kendra D., Leone, Amanda K., Vitek, Andrew K., Palermo, Edmund F., LaPointe, Anne M., Coates, Geoffrey W., Zimmerman, Paul M., McNeil, Anne J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 1
container_start_page 132
container_title Journal of polymer science. Part A, Polymer chemistry
container_volume 56
creator Souther, Kendra D.
Leone, Amanda K.
Vitek, Andrew K.
Palermo, Edmund F.
LaPointe, Anne M.
Coates, Geoffrey W.
Zimmerman, Paul M.
McNeil, Anne J.
description ABSTRACT Block copolymers containing both insulating and conducting segments have been shown to exhibit improved charge transport properties and air stability. Nevertheless, their syntheses are challenging, relying on multiple post‐polymerization functionalization reactions and purifications. A simpler approach would be to synthesize the block copolymer in one pot using the same catalyst to enchain both monomers via distinct mechanisms. Such multitasking polymerization catalysts are rare, however, due to the challenges of finding a single catalyst that can mediate living, chain‐growth polymerizations for each monomer under similar conditions. Herein, a diimine‐ligated Ni catalyst is evaluated and optimized to produce block copolymer containing both 1‐pentene and 3‐hexylthiophene. The reaction mixture also contains both homopolymers, suggesting catalyst dissociation during and/or after the switch in mechanisms. Experimental and theoretical studies reveal a high energy switching step coupled with infrequent catalyst dissociation as the culprits for the low yield of copolymer. Combined, these studies highlight the challenges of identifying multitasking catalysts, and suggest that further tuning the reaction conditions (e.g., ancillary ligand structure and/or metal) is warranted for this specific copolymerization. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 132–137 Block copolymers containing insulating segments (derived from 1‐pentene) and conducting segments (derived from 3‐hexylthiophene) are synthesized in one pot using a single multitasking catalyst. Notably, this process requires different enchainment mechanisms (coordination/insertion vs. cross‐coupling) mediated by the same precatalyst. Nevertheless, the block copolymer is the minor product due to a slow switching step between the mechanisms coupled with catalyst dissociation from the polymer chain.
doi_str_mv 10.1002/pola.28885
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966722267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966722267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3745-4f104bb9c329285ea75e9f74f186ba8cd98fe1013302b78a14840d21b7fe087c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsXP0HAm7Btkv2T7LEUrUKhHip4C9ls0qZNN2uSRdZP79b17GmYmd-8NzwA7jGaYYTIvHVWzAhjLL8AE4zKMkE5ZpdgghijSUGyj2twE8IBoWGXswnYb70RNkDR1DB6U3VWROOaAJ2GtQpm15hmB0-djSaKcDw3UkRh-xAD1M5DZ5U2zTzujWv3qlGwsk4eoXTDK_1JefM9Ct6CKz0Yqbu_OgXvz0_b5Uuy3qxel4t1IlOa5UmmMcqqqpQpKQnLlaC5KjUdxqyoBJN1ybTCCKcpIhVlAmcsQzXBFdUKMSrTKXgYdVvvPjsVIj-4zjeDJcdlUVBCSEEH6nGkpHcheKV5681J-J5jxM9J8nOS_DfJAcYj_GWs6v8h-dtmvRhvfgDst3io</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966722267</pqid></control><display><type>article</type><title>Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Souther, Kendra D. ; Leone, Amanda K. ; Vitek, Andrew K. ; Palermo, Edmund F. ; LaPointe, Anne M. ; Coates, Geoffrey W. ; Zimmerman, Paul M. ; McNeil, Anne J.</creator><creatorcontrib>Souther, Kendra D. ; Leone, Amanda K. ; Vitek, Andrew K. ; Palermo, Edmund F. ; LaPointe, Anne M. ; Coates, Geoffrey W. ; Zimmerman, Paul M. ; McNeil, Anne J.</creatorcontrib><description>ABSTRACT Block copolymers containing both insulating and conducting segments have been shown to exhibit improved charge transport properties and air stability. Nevertheless, their syntheses are challenging, relying on multiple post‐polymerization functionalization reactions and purifications. A simpler approach would be to synthesize the block copolymer in one pot using the same catalyst to enchain both monomers via distinct mechanisms. Such multitasking polymerization catalysts are rare, however, due to the challenges of finding a single catalyst that can mediate living, chain‐growth polymerizations for each monomer under similar conditions. Herein, a diimine‐ligated Ni catalyst is evaluated and optimized to produce block copolymer containing both 1‐pentene and 3‐hexylthiophene. The reaction mixture also contains both homopolymers, suggesting catalyst dissociation during and/or after the switch in mechanisms. Experimental and theoretical studies reveal a high energy switching step coupled with infrequent catalyst dissociation as the culprits for the low yield of copolymer. Combined, these studies highlight the challenges of identifying multitasking catalysts, and suggest that further tuning the reaction conditions (e.g., ancillary ligand structure and/or metal) is warranted for this specific copolymerization. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 132–137 Block copolymers containing insulating segments (derived from 1‐pentene) and conducting segments (derived from 3‐hexylthiophene) are synthesized in one pot using a single multitasking catalyst. Notably, this process requires different enchainment mechanisms (coordination/insertion vs. cross‐coupling) mediated by the same precatalyst. Nevertheless, the block copolymer is the minor product due to a slow switching step between the mechanisms coupled with catalyst dissociation from the polymer chain.</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.28885</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Block copolymers ; Catalysis ; Catalysts ; Charge transport ; Chemical synthesis ; Copolymerization ; Copolymers ; diimine ; Energy of dissociation ; Monomers ; Multitasking ; nickel ; poly(3‐hexylthiophene) ; poly(olefin) ; Polymerization</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2018-01, Vol.56 (1), p.132-137</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3745-4f104bb9c329285ea75e9f74f186ba8cd98fe1013302b78a14840d21b7fe087c3</citedby><cites>FETCH-LOGICAL-c3745-4f104bb9c329285ea75e9f74f186ba8cd98fe1013302b78a14840d21b7fe087c3</cites><orcidid>0000-0003-4591-3308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpola.28885$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpola.28885$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Souther, Kendra D.</creatorcontrib><creatorcontrib>Leone, Amanda K.</creatorcontrib><creatorcontrib>Vitek, Andrew K.</creatorcontrib><creatorcontrib>Palermo, Edmund F.</creatorcontrib><creatorcontrib>LaPointe, Anne M.</creatorcontrib><creatorcontrib>Coates, Geoffrey W.</creatorcontrib><creatorcontrib>Zimmerman, Paul M.</creatorcontrib><creatorcontrib>McNeil, Anne J.</creatorcontrib><title>Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations</title><title>Journal of polymer science. Part A, Polymer chemistry</title><description>ABSTRACT Block copolymers containing both insulating and conducting segments have been shown to exhibit improved charge transport properties and air stability. Nevertheless, their syntheses are challenging, relying on multiple post‐polymerization functionalization reactions and purifications. A simpler approach would be to synthesize the block copolymer in one pot using the same catalyst to enchain both monomers via distinct mechanisms. Such multitasking polymerization catalysts are rare, however, due to the challenges of finding a single catalyst that can mediate living, chain‐growth polymerizations for each monomer under similar conditions. Herein, a diimine‐ligated Ni catalyst is evaluated and optimized to produce block copolymer containing both 1‐pentene and 3‐hexylthiophene. The reaction mixture also contains both homopolymers, suggesting catalyst dissociation during and/or after the switch in mechanisms. Experimental and theoretical studies reveal a high energy switching step coupled with infrequent catalyst dissociation as the culprits for the low yield of copolymer. Combined, these studies highlight the challenges of identifying multitasking catalysts, and suggest that further tuning the reaction conditions (e.g., ancillary ligand structure and/or metal) is warranted for this specific copolymerization. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 132–137 Block copolymers containing insulating segments (derived from 1‐pentene) and conducting segments (derived from 3‐hexylthiophene) are synthesized in one pot using a single multitasking catalyst. Notably, this process requires different enchainment mechanisms (coordination/insertion vs. cross‐coupling) mediated by the same precatalyst. Nevertheless, the block copolymer is the minor product due to a slow switching step between the mechanisms coupled with catalyst dissociation from the polymer chain.</description><subject>Block copolymers</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transport</subject><subject>Chemical synthesis</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>diimine</subject><subject>Energy of dissociation</subject><subject>Monomers</subject><subject>Multitasking</subject><subject>nickel</subject><subject>poly(3‐hexylthiophene)</subject><subject>poly(olefin)</subject><subject>Polymerization</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsXP0HAm7Btkv2T7LEUrUKhHip4C9ls0qZNN2uSRdZP79b17GmYmd-8NzwA7jGaYYTIvHVWzAhjLL8AE4zKMkE5ZpdgghijSUGyj2twE8IBoWGXswnYb70RNkDR1DB6U3VWROOaAJ2GtQpm15hmB0-djSaKcDw3UkRh-xAD1M5DZ5U2zTzujWv3qlGwsk4eoXTDK_1JefM9Ct6CKz0Yqbu_OgXvz0_b5Uuy3qxel4t1IlOa5UmmMcqqqpQpKQnLlaC5KjUdxqyoBJN1ybTCCKcpIhVlAmcsQzXBFdUKMSrTKXgYdVvvPjsVIj-4zjeDJcdlUVBCSEEH6nGkpHcheKV5681J-J5jxM9J8nOS_DfJAcYj_GWs6v8h-dtmvRhvfgDst3io</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Souther, Kendra D.</creator><creator>Leone, Amanda K.</creator><creator>Vitek, Andrew K.</creator><creator>Palermo, Edmund F.</creator><creator>LaPointe, Anne M.</creator><creator>Coates, Geoffrey W.</creator><creator>Zimmerman, Paul M.</creator><creator>McNeil, Anne J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4591-3308</orcidid></search><sort><creationdate>20180101</creationdate><title>Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations</title><author>Souther, Kendra D. ; Leone, Amanda K. ; Vitek, Andrew K. ; Palermo, Edmund F. ; LaPointe, Anne M. ; Coates, Geoffrey W. ; Zimmerman, Paul M. ; McNeil, Anne J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3745-4f104bb9c329285ea75e9f74f186ba8cd98fe1013302b78a14840d21b7fe087c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Block copolymers</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transport</topic><topic>Chemical synthesis</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>diimine</topic><topic>Energy of dissociation</topic><topic>Monomers</topic><topic>Multitasking</topic><topic>nickel</topic><topic>poly(3‐hexylthiophene)</topic><topic>poly(olefin)</topic><topic>Polymerization</topic><toplevel>online_resources</toplevel><creatorcontrib>Souther, Kendra D.</creatorcontrib><creatorcontrib>Leone, Amanda K.</creatorcontrib><creatorcontrib>Vitek, Andrew K.</creatorcontrib><creatorcontrib>Palermo, Edmund F.</creatorcontrib><creatorcontrib>LaPointe, Anne M.</creatorcontrib><creatorcontrib>Coates, Geoffrey W.</creatorcontrib><creatorcontrib>Zimmerman, Paul M.</creatorcontrib><creatorcontrib>McNeil, Anne J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souther, Kendra D.</au><au>Leone, Amanda K.</au><au>Vitek, Andrew K.</au><au>Palermo, Edmund F.</au><au>LaPointe, Anne M.</au><au>Coates, Geoffrey W.</au><au>Zimmerman, Paul M.</au><au>McNeil, Anne J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>132</spage><epage>137</epage><pages>132-137</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><abstract>ABSTRACT Block copolymers containing both insulating and conducting segments have been shown to exhibit improved charge transport properties and air stability. Nevertheless, their syntheses are challenging, relying on multiple post‐polymerization functionalization reactions and purifications. A simpler approach would be to synthesize the block copolymer in one pot using the same catalyst to enchain both monomers via distinct mechanisms. Such multitasking polymerization catalysts are rare, however, due to the challenges of finding a single catalyst that can mediate living, chain‐growth polymerizations for each monomer under similar conditions. Herein, a diimine‐ligated Ni catalyst is evaluated and optimized to produce block copolymer containing both 1‐pentene and 3‐hexylthiophene. The reaction mixture also contains both homopolymers, suggesting catalyst dissociation during and/or after the switch in mechanisms. Experimental and theoretical studies reveal a high energy switching step coupled with infrequent catalyst dissociation as the culprits for the low yield of copolymer. Combined, these studies highlight the challenges of identifying multitasking catalysts, and suggest that further tuning the reaction conditions (e.g., ancillary ligand structure and/or metal) is warranted for this specific copolymerization. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 132–137 Block copolymers containing insulating segments (derived from 1‐pentene) and conducting segments (derived from 3‐hexylthiophene) are synthesized in one pot using a single multitasking catalyst. Notably, this process requires different enchainment mechanisms (coordination/insertion vs. cross‐coupling) mediated by the same precatalyst. Nevertheless, the block copolymer is the minor product due to a slow switching step between the mechanisms coupled with catalyst dissociation from the polymer chain.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pola.28885</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4591-3308</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-624X
ispartof Journal of polymer science. Part A, Polymer chemistry, 2018-01, Vol.56 (1), p.132-137
issn 0887-624X
1099-0518
language eng
recordid cdi_proquest_journals_1966722267
source Wiley Online Library Journals Frontfile Complete
subjects Block copolymers
Catalysis
Catalysts
Charge transport
Chemical synthesis
Copolymerization
Copolymers
diimine
Energy of dissociation
Monomers
Multitasking
nickel
poly(3‐hexylthiophene)
poly(olefin)
Polymerization
title Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trials%20and%20tribulations%20of%20designing%20multitasking%20catalysts%20for%20olefin/thiophene%20block%20copolymerizations&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Souther,%20Kendra%20D.&rft.date=2018-01-01&rft.volume=56&rft.issue=1&rft.spage=132&rft.epage=137&rft.pages=132-137&rft.issn=0887-624X&rft.eissn=1099-0518&rft_id=info:doi/10.1002/pola.28885&rft_dat=%3Cproquest_cross%3E1966722267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966722267&rft_id=info:pmid/&rfr_iscdi=true