Synthesis, characterization, and gas permeation properties of adamantane‐containing polymers of intrinsic microporosity

ABSTRACT A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2018-01, Vol.56 (1), p.16-24
Hauptverfasser: Shrimant, Bharat, Shaligram, Sayali V., Kharul, Ulhas K., Wadgaonkar, Prakash P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 16
container_title Journal of polymer science. Part A, Polymer chemistry
container_volume 56
creator Shrimant, Bharat
Shaligram, Sayali V.
Kharul, Ulhas K.
Wadgaonkar, Prakash P.
description ABSTRACT A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 16–24 New adamantane‐containing intrinsically microporous homo‐ and copolymers were synthesized by the polycondensation of (1r, 3r)‐2,2‐bis(3,4‐dihydroxyphenyl)adamantane (THADM) and by varying compositions of THADM and 5,5,6′,6′‐tetrahydroxy 3,3,3′,3′‐tetramethyl‐spirobisindane with 2,3,5,6‐tetrafluoroterephthalonitrile. The gas permeability studies of polymers of intrinsic microporosity demonstrated improvement in selectivity for all gas pairs by the introduction of adamantane units.
doi_str_mv 10.1002/pola.28710
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966721724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966721724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3380-e6bc3aa343e0d5c765fbd0d67653a065d737827c19aa25513c2280b56e728d653</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgTjo1yXQmmWUp3qBQQQV34TSTaVM6mTFJkXHlI_iMPolpx7Wrc_vOOT8_QpeUjCkh7KZttjBmglNyhAaUFEVCMiqO0YAIwZOcTd5O0Zn3G0LiLBMD1D13Nqy1N36E1RocqKCd-YRgGjvCYEu8Ao9b7Wp96OHWNbEKRnvcVBhKqMEGsPrn61s1MTPW2BWOOrpauwNjbHDGeqNwbVTcblzjTejO0UkFW68v_uIQvd7dvswekvni_nE2nScqTQVJdL5UKUA6STUpM8XzrFqWpMxjkgLJs5KnXDCuaAHAsoymijFBllmuORNlhIboqr8blb_vtA9y0-ycjS8lLfKcM8rZJFLXPRUVeu90JVtnanCdpETurZV7a-XB2gjTHv4wW939Q8qnxXza7_wCbS5_jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966721724</pqid></control><display><type>article</type><title>Synthesis, characterization, and gas permeation properties of adamantane‐containing polymers of intrinsic microporosity</title><source>Wiley Journals</source><creator>Shrimant, Bharat ; Shaligram, Sayali V. ; Kharul, Ulhas K. ; Wadgaonkar, Prakash P.</creator><creatorcontrib>Shrimant, Bharat ; Shaligram, Sayali V. ; Kharul, Ulhas K. ; Wadgaonkar, Prakash P.</creatorcontrib><description>ABSTRACT A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 16–24 New adamantane‐containing intrinsically microporous homo‐ and copolymers were synthesized by the polycondensation of (1r, 3r)‐2,2‐bis(3,4‐dihydroxyphenyl)adamantane (THADM) and by varying compositions of THADM and 5,5,6′,6′‐tetrahydroxy 3,3,3′,3′‐tetramethyl‐spirobisindane with 2,3,5,6‐tetrafluoroterephthalonitrile. The gas permeability studies of polymers of intrinsic microporosity demonstrated improvement in selectivity for all gas pairs by the introduction of adamantane units.</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.28710</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>adamantane ; Benzene ; Carbon dioxide ; Catechol ; Chemical synthesis ; Chloroform ; Dichloromethane ; Gas permeation ; Gas separation ; intrinsic microporosity ; membranes ; Methane ; Microporosity ; Permeability ; Polymers ; Powder injection molding ; Selectivity ; structure‐property relations ; Tetrahydrofuran ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2018-01, Vol.56 (1), p.16-24</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3380-e6bc3aa343e0d5c765fbd0d67653a065d737827c19aa25513c2280b56e728d653</citedby><cites>FETCH-LOGICAL-c3380-e6bc3aa343e0d5c765fbd0d67653a065d737827c19aa25513c2280b56e728d653</cites><orcidid>0000-0002-9664-3988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpola.28710$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpola.28710$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shrimant, Bharat</creatorcontrib><creatorcontrib>Shaligram, Sayali V.</creatorcontrib><creatorcontrib>Kharul, Ulhas K.</creatorcontrib><creatorcontrib>Wadgaonkar, Prakash P.</creatorcontrib><title>Synthesis, characterization, and gas permeation properties of adamantane‐containing polymers of intrinsic microporosity</title><title>Journal of polymer science. Part A, Polymer chemistry</title><description>ABSTRACT A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 16–24 New adamantane‐containing intrinsically microporous homo‐ and copolymers were synthesized by the polycondensation of (1r, 3r)‐2,2‐bis(3,4‐dihydroxyphenyl)adamantane (THADM) and by varying compositions of THADM and 5,5,6′,6′‐tetrahydroxy 3,3,3′,3′‐tetramethyl‐spirobisindane with 2,3,5,6‐tetrafluoroterephthalonitrile. The gas permeability studies of polymers of intrinsic microporosity demonstrated improvement in selectivity for all gas pairs by the introduction of adamantane units.</description><subject>adamantane</subject><subject>Benzene</subject><subject>Carbon dioxide</subject><subject>Catechol</subject><subject>Chemical synthesis</subject><subject>Chloroform</subject><subject>Dichloromethane</subject><subject>Gas permeation</subject><subject>Gas separation</subject><subject>intrinsic microporosity</subject><subject>membranes</subject><subject>Methane</subject><subject>Microporosity</subject><subject>Permeability</subject><subject>Polymers</subject><subject>Powder injection molding</subject><subject>Selectivity</subject><subject>structure‐property relations</subject><subject>Tetrahydrofuran</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgTjo1yXQmmWUp3qBQQQV34TSTaVM6mTFJkXHlI_iMPolpx7Wrc_vOOT8_QpeUjCkh7KZttjBmglNyhAaUFEVCMiqO0YAIwZOcTd5O0Zn3G0LiLBMD1D13Nqy1N36E1RocqKCd-YRgGjvCYEu8Ao9b7Wp96OHWNbEKRnvcVBhKqMEGsPrn61s1MTPW2BWOOrpauwNjbHDGeqNwbVTcblzjTejO0UkFW68v_uIQvd7dvswekvni_nE2nScqTQVJdL5UKUA6STUpM8XzrFqWpMxjkgLJs5KnXDCuaAHAsoymijFBllmuORNlhIboqr8blb_vtA9y0-ycjS8lLfKcM8rZJFLXPRUVeu90JVtnanCdpETurZV7a-XB2gjTHv4wW939Q8qnxXza7_wCbS5_jw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shrimant, Bharat</creator><creator>Shaligram, Sayali V.</creator><creator>Kharul, Ulhas K.</creator><creator>Wadgaonkar, Prakash P.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9664-3988</orcidid></search><sort><creationdate>20180101</creationdate><title>Synthesis, characterization, and gas permeation properties of adamantane‐containing polymers of intrinsic microporosity</title><author>Shrimant, Bharat ; Shaligram, Sayali V. ; Kharul, Ulhas K. ; Wadgaonkar, Prakash P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3380-e6bc3aa343e0d5c765fbd0d67653a065d737827c19aa25513c2280b56e728d653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adamantane</topic><topic>Benzene</topic><topic>Carbon dioxide</topic><topic>Catechol</topic><topic>Chemical synthesis</topic><topic>Chloroform</topic><topic>Dichloromethane</topic><topic>Gas permeation</topic><topic>Gas separation</topic><topic>intrinsic microporosity</topic><topic>membranes</topic><topic>Methane</topic><topic>Microporosity</topic><topic>Permeability</topic><topic>Polymers</topic><topic>Powder injection molding</topic><topic>Selectivity</topic><topic>structure‐property relations</topic><topic>Tetrahydrofuran</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Shrimant, Bharat</creatorcontrib><creatorcontrib>Shaligram, Sayali V.</creatorcontrib><creatorcontrib>Kharul, Ulhas K.</creatorcontrib><creatorcontrib>Wadgaonkar, Prakash P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrimant, Bharat</au><au>Shaligram, Sayali V.</au><au>Kharul, Ulhas K.</au><au>Wadgaonkar, Prakash P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, characterization, and gas permeation properties of adamantane‐containing polymers of intrinsic microporosity</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>16</spage><epage>24</epage><pages>16-24</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><abstract>ABSTRACT A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 16–24 New adamantane‐containing intrinsically microporous homo‐ and copolymers were synthesized by the polycondensation of (1r, 3r)‐2,2‐bis(3,4‐dihydroxyphenyl)adamantane (THADM) and by varying compositions of THADM and 5,5,6′,6′‐tetrahydroxy 3,3,3′,3′‐tetramethyl‐spirobisindane with 2,3,5,6‐tetrafluoroterephthalonitrile. The gas permeability studies of polymers of intrinsic microporosity demonstrated improvement in selectivity for all gas pairs by the introduction of adamantane units.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pola.28710</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9664-3988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-624X
ispartof Journal of polymer science. Part A, Polymer chemistry, 2018-01, Vol.56 (1), p.16-24
issn 0887-624X
1099-0518
language eng
recordid cdi_proquest_journals_1966721724
source Wiley Journals
subjects adamantane
Benzene
Carbon dioxide
Catechol
Chemical synthesis
Chloroform
Dichloromethane
Gas permeation
Gas separation
intrinsic microporosity
membranes
Methane
Microporosity
Permeability
Polymers
Powder injection molding
Selectivity
structure‐property relations
Tetrahydrofuran
Thermal stability
Thermogravimetric analysis
title Synthesis, characterization, and gas permeation properties of adamantane‐containing polymers of intrinsic microporosity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20characterization,%20and%20gas%20permeation%20properties%20of%20adamantane%E2%80%90containing%20polymers%20of%20intrinsic%20microporosity&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Shrimant,%20Bharat&rft.date=2018-01-01&rft.volume=56&rft.issue=1&rft.spage=16&rft.epage=24&rft.pages=16-24&rft.issn=0887-624X&rft.eissn=1099-0518&rft_id=info:doi/10.1002/pola.28710&rft_dat=%3Cproquest_cross%3E1966721724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966721724&rft_id=info:pmid/&rfr_iscdi=true