Optimization of the injection-port geometries of a vapor injection scroll compressor based on SCOP under various climatic conditions
An analytical study is conducted to optimize the injection-port geometries of a vapor injection asymmetric scroll compressor operating under various climatic conditions. A numerical model was developed to predict the performance of the vapor injection asymmetric scroll compressor in the heating mode...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2017-09, Vol.135, p.442-454 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An analytical study is conducted to optimize the injection-port geometries of a vapor injection asymmetric scroll compressor operating under various climatic conditions. A numerical model was developed to predict the performance of the vapor injection asymmetric scroll compressor in the heating mode according to various operating parameters, and this numerical model was validated using data measured in a vapor injection heat pump. The effects of the location and number of injection ports on the performance of the asymmetric scroll compressor were analyzed using the numerical model. Both the optimal injection-port angle and required injection-port area increased as the outdoor temperature decreased in order to increase the injection mass flow rate. The optimized injection port designs were then proposed for the asymmetric scroll compressor in order to achieve the maximum SCOP (seasonal coefficient of performance) under various climatic conditions, improving the SCOP by 2%–6% relative to the baseline injection compressor.
•A numerical model is developed to predict the performance of a vapor injection scroll compressor.•The effects of the injection-port geometries on the performance of the heat pump are analyzed.•The SCOPs of the heat pump with various injection-port designs are compared.•The optimized injection-port designs are suggested under various climatic conditions. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2017.06.153 |