HUSSERL AND HILBERT ON COMPLETENESS

Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthese (Dordrecht) 1997-01, Vol.110 (1), p.37
1. Verfasser: Majer, ULRICH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 37
container_title Synthese (Dordrecht)
container_volume 110
creator Majer, ULRICH
description Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain.
doi_str_mv 10.1023/A:1004962922108
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_196636399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>979345661</sourcerecordid><originalsourceid>FETCH-proquest_journals_1966363993</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOEbo4n4M7s2OqP3tlCoG2INJgiG4kwccCBGlMr76-ADOJ3hOwALwjUhF5toS4ieklxxThgOwCE_EC4q6Q3BQRTKDUI_GMPE2gaRSHrowCq5GKOLlEXZniXHdKeLkuUZi_PTOdWlzrQxMxjdrndbz3-dwvKgyzhxn1376mv7rpq27x5fqkhJKaRQSvw1fQDL9TBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196636399</pqid></control><display><type>article</type><title>HUSSERL AND HILBERT ON COMPLETENESS</title><source>Jstor Complete Legacy</source><source>SpringerNature Complete Journals</source><creator>Majer, ULRICH</creator><creatorcontrib>Majer, ULRICH</creatorcontrib><description>Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1023/A:1004962922108</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Geometry ; Mathematicians ; Mathematics ; Public speaking</subject><ispartof>Synthese (Dordrecht), 1997-01, Vol.110 (1), p.37</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Majer, ULRICH</creatorcontrib><title>HUSSERL AND HILBERT ON COMPLETENESS</title><title>Synthese (Dordrecht)</title><description>Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain.</description><subject>Geometry</subject><subject>Mathematicians</subject><subject>Mathematics</subject><subject>Public speaking</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNqNyr0OgjAUQOEbo4n4M7s2OqP3tlCoG2INJgiG4kwccCBGlMr76-ADOJ3hOwALwjUhF5toS4ieklxxThgOwCE_EC4q6Q3BQRTKDUI_GMPE2gaRSHrowCq5GKOLlEXZniXHdKeLkuUZi_PTOdWlzrQxMxjdrndbz3-dwvKgyzhxn1376mv7rpq27x5fqkhJKaRQSvw1fQDL9TBY</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Majer, ULRICH</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19970101</creationdate><title>HUSSERL AND HILBERT ON COMPLETENESS</title><author>Majer, ULRICH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_1966363993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Geometry</topic><topic>Mathematicians</topic><topic>Mathematics</topic><topic>Public speaking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majer, ULRICH</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>One Literature (ProQuest)</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majer, ULRICH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HUSSERL AND HILBERT ON COMPLETENESS</atitle><jtitle>Synthese (Dordrecht)</jtitle><date>1997-01-01</date><risdate>1997</risdate><volume>110</volume><issue>1</issue><spage>37</spage><pages>37-</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1004962922108</doi></addata></record>
fulltext fulltext
identifier ISSN: 0039-7857
ispartof Synthese (Dordrecht), 1997-01, Vol.110 (1), p.37
issn 0039-7857
1573-0964
language eng
recordid cdi_proquest_journals_196636399
source Jstor Complete Legacy; SpringerNature Complete Journals
subjects Geometry
Mathematicians
Mathematics
Public speaking
title HUSSERL AND HILBERT ON COMPLETENESS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HUSSERL%20AND%20HILBERT%20ON%20COMPLETENESS&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Majer,%20ULRICH&rft.date=1997-01-01&rft.volume=110&rft.issue=1&rft.spage=37&rft.pages=37-&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1023/A:1004962922108&rft_dat=%3Cproquest%3E979345661%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196636399&rft_id=info:pmid/&rfr_iscdi=true