HUSSERL AND HILBERT ON COMPLETENESS
Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other...
Gespeichert in:
Veröffentlicht in: | Synthese (Dordrecht) 1997-01, Vol.110 (1), p.37 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Synthese (Dordrecht) |
container_volume | 110 |
creator | Majer, ULRICH |
description | Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain. |
doi_str_mv | 10.1023/A:1004962922108 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_196636399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>979345661</sourcerecordid><originalsourceid>FETCH-proquest_journals_1966363993</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOEbo4n4M7s2OqP3tlCoG2INJgiG4kwccCBGlMr76-ADOJ3hOwALwjUhF5toS4ieklxxThgOwCE_EC4q6Q3BQRTKDUI_GMPE2gaRSHrowCq5GKOLlEXZniXHdKeLkuUZi_PTOdWlzrQxMxjdrndbz3-dwvKgyzhxn1376mv7rpq27x5fqkhJKaRQSvw1fQDL9TBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196636399</pqid></control><display><type>article</type><title>HUSSERL AND HILBERT ON COMPLETENESS</title><source>Jstor Complete Legacy</source><source>SpringerNature Complete Journals</source><creator>Majer, ULRICH</creator><creatorcontrib>Majer, ULRICH</creatorcontrib><description>Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1023/A:1004962922108</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Geometry ; Mathematicians ; Mathematics ; Public speaking</subject><ispartof>Synthese (Dordrecht), 1997-01, Vol.110 (1), p.37</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Majer, ULRICH</creatorcontrib><title>HUSSERL AND HILBERT ON COMPLETENESS</title><title>Synthese (Dordrecht)</title><description>Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain.</description><subject>Geometry</subject><subject>Mathematicians</subject><subject>Mathematics</subject><subject>Public speaking</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNqNyr0OgjAUQOEbo4n4M7s2OqP3tlCoG2INJgiG4kwccCBGlMr76-ADOJ3hOwALwjUhF5toS4ieklxxThgOwCE_EC4q6Q3BQRTKDUI_GMPE2gaRSHrowCq5GKOLlEXZniXHdKeLkuUZi_PTOdWlzrQxMxjdrndbz3-dwvKgyzhxn1376mv7rpq27x5fqkhJKaRQSvw1fQDL9TBY</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Majer, ULRICH</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19970101</creationdate><title>HUSSERL AND HILBERT ON COMPLETENESS</title><author>Majer, ULRICH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_1966363993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Geometry</topic><topic>Mathematicians</topic><topic>Mathematics</topic><topic>Public speaking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majer, ULRICH</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design & Architecture Collection</collection><collection>One Literature (ProQuest)</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majer, ULRICH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HUSSERL AND HILBERT ON COMPLETENESS</atitle><jtitle>Synthese (Dordrecht)</jtitle><date>1997-01-01</date><risdate>1997</risdate><volume>110</volume><issue>1</issue><spage>37</spage><pages>37-</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>Only in this sense of the impossibility of a proper representation of an infinite set is it correct to say: there is no actual infinite.13After this interruption Weyl comes eventually to the third and last level of Husserls phenomenological approach to mathematics: Because we are compelled by other irrefutable reasons to introduce infinite sets indeed analysis alone forces this when finally we come to the third level, where we erect the theory of finite and infinite sets and numbers in a scientifically systematic way by setting up appropriate axioms, definitions and the consequences drawn from them. [...]we have to expand the Urdomain by a set of new elements, which enable us to perform the operation, let us say, of subtraction or division unlimited. [...]one cannot judge whether the axiomatic characterization of the Urdomain is complete. [...]the above statement is only correct if we take the entire set of natural numbers as the Urdomain.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1004962922108</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-7857 |
ispartof | Synthese (Dordrecht), 1997-01, Vol.110 (1), p.37 |
issn | 0039-7857 1573-0964 |
language | eng |
recordid | cdi_proquest_journals_196636399 |
source | Jstor Complete Legacy; SpringerNature Complete Journals |
subjects | Geometry Mathematicians Mathematics Public speaking |
title | HUSSERL AND HILBERT ON COMPLETENESS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HUSSERL%20AND%20HILBERT%20ON%20COMPLETENESS&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Majer,%20ULRICH&rft.date=1997-01-01&rft.volume=110&rft.issue=1&rft.spage=37&rft.pages=37-&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1023/A:1004962922108&rft_dat=%3Cproquest%3E979345661%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196636399&rft_id=info:pmid/&rfr_iscdi=true |