Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions
Abstract Recent studies show that localized crustal magnetic fields on the lunar surface can reflect a significant portion of the incoming solar wind protons. These reflected ions can drive a wide range of plasma waves. It is difficult to determine the intrinsic properties of low-frequency waves wit...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2017-10, Vol.122 (10), p.9983-9993 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9993 |
---|---|
container_issue | 10 |
container_start_page | 9983 |
container_title | Journal of geophysical research. Space physics |
container_volume | 122 |
creator | Howard, S. K. Halekas, J. S. Farrell, W. M. Mcfadden, J. P. Glassmeier, K.-H. |
description | Abstract Recent studies show that localized crustal magnetic fields on the lunar surface can reflect a significant portion of the incoming solar wind protons. These reflected ions can drive a wide range of plasma waves. It is difficult to determine the intrinsic properties of low-frequency waves with single-spacecraft observations, which can be heavily Doppler shifted. We describe a technique to combine trajectory analysis of reflected protons with the Doppler shift and resonance conditions to identify ultralow-frequency waves at the Moon. On 31 January 2014 plasma waves were detected by one of the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) probes as it approached the lunar wake; these waves were not detected by the second ARTEMIS probe located upstream in the undisturbed solar wind. The observed waves had a frequency below the local ion cyclotron frequency and had right-hand circular polarization in the reference frame of the Moon. By solving the Doppler shift and the cyclotron resonance equations, we determined the conditions for reflected ions to excite the observed waves. Simulated trajectories of reflected ions correspond to ARTEMIS ion observations and support the hypothesis that reflected ions are the primary driver of the waves. By combining trajectory analysis with the resonance conditions, we identify scenarios where ions that satisfy the resonance conditions are present in the right location to generate the observed waves. Using this method, we can uniquely identify the observed waves as upstream propagating right-hand polarized waves, subject to the assumption that they are generated by cyclotron resonance with ions. |
doi_str_mv | 10.1002/2017JA024018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966326541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966326541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3669-ab9d7d8380b276aeeeb4c6af93dadf411a94aaeb2f0a6f4dbd1e410c74b169b33</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWGpvHj0EvFpNsul-HEtpa8uCUlo8htlNVlO2SU22rfvvTVkFT-aSMDxPeGcGoVtKHikh7IkRmizHhHFC0wvUYzTOhhkn7PL3HaXkGg2835Jw0lCiox76WkhlGl212rzjTd04wLk94ZlTnwdlyha_wVF5rA1uPhTODwYcfq3B7wBPzVE7a3bBxxt_9tcOtqpsrGvx2EDdeu0xGIlXylsDplR4Yo3UjbbG36CrCmqvBj93H21m0_XkeZi_zBeTcT4sozikhiKTiUxD9oIlMSilCl7GUGWRBFlxSiHjAKpgFYG44rKQVHFKyoQXocMiivrovvt372xoyTdiaw8upPOCZnEcsXjEaaAeOqp01nunKrF3egeuFZSI83jF3_EGPOrwk65V-y8rlvPVeBTyZ8G66ywDHoRpnD-TadgGD1b0DYwkhbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966326541</pqid></control><display><type>article</type><title>Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions</title><source>Wiley Online Library (Online service)</source><source>NASA Technical Reports Server</source><source>Wiley Online Library (Open Access Collection)</source><creator>Howard, S. K. ; Halekas, J. S. ; Farrell, W. M. ; Mcfadden, J. P. ; Glassmeier, K.-H.</creator><creatorcontrib>Howard, S. K. ; Halekas, J. S. ; Farrell, W. M. ; Mcfadden, J. P. ; Glassmeier, K.-H.</creatorcontrib><description>Abstract Recent studies show that localized crustal magnetic fields on the lunar surface can reflect a significant portion of the incoming solar wind protons. These reflected ions can drive a wide range of plasma waves. It is difficult to determine the intrinsic properties of low-frequency waves with single-spacecraft observations, which can be heavily Doppler shifted. We describe a technique to combine trajectory analysis of reflected protons with the Doppler shift and resonance conditions to identify ultralow-frequency waves at the Moon. On 31 January 2014 plasma waves were detected by one of the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) probes as it approached the lunar wake; these waves were not detected by the second ARTEMIS probe located upstream in the undisturbed solar wind. The observed waves had a frequency below the local ion cyclotron frequency and had right-hand circular polarization in the reference frame of the Moon. By solving the Doppler shift and the cyclotron resonance equations, we determined the conditions for reflected ions to excite the observed waves. Simulated trajectories of reflected ions correspond to ARTEMIS ion observations and support the hypothesis that reflected ions are the primary driver of the waves. By combining trajectory analysis with the resonance conditions, we identify scenarios where ions that satisfy the resonance conditions are present in the right location to generate the observed waves. Using this method, we can uniquely identify the observed waves as upstream propagating right-hand polarized waves, subject to the assumption that they are generated by cyclotron resonance with ions.</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024018</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Geophysical Union</publisher><subject>ARTEMIS ; Circular polarization ; Cyclotron frequency ; Cyclotron resonance ; Doppler effect ; Electrodynamics ; Extremely low frequencies ; ion cyclotron resonance ; Ions ; Lunar probes ; Lunar surface ; Lunar wake ; Magnetic fields ; Magnetic resonance ; Moon ; Plasma Physics ; Plasma waves ; Resonance ; Solar wind ; Solar wind protons ; Spacecraft ; Trajectory analysis ; Turbulence ; Upstream ; Wave propagation</subject><ispartof>Journal of geophysical research. Space physics, 2017-10, Vol.122 (10), p.9983-9993</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3669-ab9d7d8380b276aeeeb4c6af93dadf411a94aaeb2f0a6f4dbd1e410c74b169b33</citedby><cites>FETCH-LOGICAL-c3669-ab9d7d8380b276aeeeb4c6af93dadf411a94aaeb2f0a6f4dbd1e410c74b169b33</cites><orcidid>0000-0001-9441-3700 ; 0000-0002-2284-7654 ; 0000-0001-5258-6128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA024018$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA024018$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Howard, S. K.</creatorcontrib><creatorcontrib>Halekas, J. S.</creatorcontrib><creatorcontrib>Farrell, W. M.</creatorcontrib><creatorcontrib>Mcfadden, J. P.</creatorcontrib><creatorcontrib>Glassmeier, K.-H.</creatorcontrib><title>Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions</title><title>Journal of geophysical research. Space physics</title><description>Abstract Recent studies show that localized crustal magnetic fields on the lunar surface can reflect a significant portion of the incoming solar wind protons. These reflected ions can drive a wide range of plasma waves. It is difficult to determine the intrinsic properties of low-frequency waves with single-spacecraft observations, which can be heavily Doppler shifted. We describe a technique to combine trajectory analysis of reflected protons with the Doppler shift and resonance conditions to identify ultralow-frequency waves at the Moon. On 31 January 2014 plasma waves were detected by one of the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) probes as it approached the lunar wake; these waves were not detected by the second ARTEMIS probe located upstream in the undisturbed solar wind. The observed waves had a frequency below the local ion cyclotron frequency and had right-hand circular polarization in the reference frame of the Moon. By solving the Doppler shift and the cyclotron resonance equations, we determined the conditions for reflected ions to excite the observed waves. Simulated trajectories of reflected ions correspond to ARTEMIS ion observations and support the hypothesis that reflected ions are the primary driver of the waves. By combining trajectory analysis with the resonance conditions, we identify scenarios where ions that satisfy the resonance conditions are present in the right location to generate the observed waves. Using this method, we can uniquely identify the observed waves as upstream propagating right-hand polarized waves, subject to the assumption that they are generated by cyclotron resonance with ions.</description><subject>ARTEMIS</subject><subject>Circular polarization</subject><subject>Cyclotron frequency</subject><subject>Cyclotron resonance</subject><subject>Doppler effect</subject><subject>Electrodynamics</subject><subject>Extremely low frequencies</subject><subject>ion cyclotron resonance</subject><subject>Ions</subject><subject>Lunar probes</subject><subject>Lunar surface</subject><subject>Lunar wake</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Moon</subject><subject>Plasma Physics</subject><subject>Plasma waves</subject><subject>Resonance</subject><subject>Solar wind</subject><subject>Solar wind protons</subject><subject>Spacecraft</subject><subject>Trajectory analysis</subject><subject>Turbulence</subject><subject>Upstream</subject><subject>Wave propagation</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kU1LAzEQhoMoWGpvHj0EvFpNsul-HEtpa8uCUlo8htlNVlO2SU22rfvvTVkFT-aSMDxPeGcGoVtKHikh7IkRmizHhHFC0wvUYzTOhhkn7PL3HaXkGg2835Jw0lCiox76WkhlGl212rzjTd04wLk94ZlTnwdlyha_wVF5rA1uPhTODwYcfq3B7wBPzVE7a3bBxxt_9tcOtqpsrGvx2EDdeu0xGIlXylsDplR4Yo3UjbbG36CrCmqvBj93H21m0_XkeZi_zBeTcT4sozikhiKTiUxD9oIlMSilCl7GUGWRBFlxSiHjAKpgFYG44rKQVHFKyoQXocMiivrovvt372xoyTdiaw8upPOCZnEcsXjEaaAeOqp01nunKrF3egeuFZSI83jF3_EGPOrwk65V-y8rlvPVeBTyZ8G66ywDHoRpnD-TadgGD1b0DYwkhbE</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Howard, S. K.</creator><creator>Halekas, J. S.</creator><creator>Farrell, W. M.</creator><creator>Mcfadden, J. P.</creator><creator>Glassmeier, K.-H.</creator><general>American Geophysical Union</general><general>Blackwell Publishing Ltd</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9441-3700</orcidid><orcidid>https://orcid.org/0000-0002-2284-7654</orcidid><orcidid>https://orcid.org/0000-0001-5258-6128</orcidid></search><sort><creationdate>201710</creationdate><title>Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions</title><author>Howard, S. K. ; Halekas, J. S. ; Farrell, W. M. ; Mcfadden, J. P. ; Glassmeier, K.-H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3669-ab9d7d8380b276aeeeb4c6af93dadf411a94aaeb2f0a6f4dbd1e410c74b169b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ARTEMIS</topic><topic>Circular polarization</topic><topic>Cyclotron frequency</topic><topic>Cyclotron resonance</topic><topic>Doppler effect</topic><topic>Electrodynamics</topic><topic>Extremely low frequencies</topic><topic>ion cyclotron resonance</topic><topic>Ions</topic><topic>Lunar probes</topic><topic>Lunar surface</topic><topic>Lunar wake</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Moon</topic><topic>Plasma Physics</topic><topic>Plasma waves</topic><topic>Resonance</topic><topic>Solar wind</topic><topic>Solar wind protons</topic><topic>Spacecraft</topic><topic>Trajectory analysis</topic><topic>Turbulence</topic><topic>Upstream</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, S. K.</creatorcontrib><creatorcontrib>Halekas, J. S.</creatorcontrib><creatorcontrib>Farrell, W. M.</creatorcontrib><creatorcontrib>Mcfadden, J. P.</creatorcontrib><creatorcontrib>Glassmeier, K.-H.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, S. K.</au><au>Halekas, J. S.</au><au>Farrell, W. M.</au><au>Mcfadden, J. P.</au><au>Glassmeier, K.-H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-10</date><risdate>2017</risdate><volume>122</volume><issue>10</issue><spage>9983</spage><epage>9993</epage><pages>9983-9993</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Abstract Recent studies show that localized crustal magnetic fields on the lunar surface can reflect a significant portion of the incoming solar wind protons. These reflected ions can drive a wide range of plasma waves. It is difficult to determine the intrinsic properties of low-frequency waves with single-spacecraft observations, which can be heavily Doppler shifted. We describe a technique to combine trajectory analysis of reflected protons with the Doppler shift and resonance conditions to identify ultralow-frequency waves at the Moon. On 31 January 2014 plasma waves were detected by one of the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) probes as it approached the lunar wake; these waves were not detected by the second ARTEMIS probe located upstream in the undisturbed solar wind. The observed waves had a frequency below the local ion cyclotron frequency and had right-hand circular polarization in the reference frame of the Moon. By solving the Doppler shift and the cyclotron resonance equations, we determined the conditions for reflected ions to excite the observed waves. Simulated trajectories of reflected ions correspond to ARTEMIS ion observations and support the hypothesis that reflected ions are the primary driver of the waves. By combining trajectory analysis with the resonance conditions, we identify scenarios where ions that satisfy the resonance conditions are present in the right location to generate the observed waves. Using this method, we can uniquely identify the observed waves as upstream propagating right-hand polarized waves, subject to the assumption that they are generated by cyclotron resonance with ions.</abstract><cop>Goddard Space Flight Center</cop><pub>American Geophysical Union</pub><doi>10.1002/2017JA024018</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9441-3700</orcidid><orcidid>https://orcid.org/0000-0002-2284-7654</orcidid><orcidid>https://orcid.org/0000-0001-5258-6128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2017-10, Vol.122 (10), p.9983-9993 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_1966326541 |
source | Wiley Online Library (Online service); NASA Technical Reports Server; Wiley Online Library (Open Access Collection) |
subjects | ARTEMIS Circular polarization Cyclotron frequency Cyclotron resonance Doppler effect Electrodynamics Extremely low frequencies ion cyclotron resonance Ions Lunar probes Lunar surface Lunar wake Magnetic fields Magnetic resonance Moon Plasma Physics Plasma waves Resonance Solar wind Solar wind protons Spacecraft Trajectory analysis Turbulence Upstream Wave propagation |
title | Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Ultra%20Low%20Frequency%20Waves%20in%20the%20Lunar%20Plasma%20Environment%20Using%20Trajectory%20Analysis%20and%20Resonance%20Conditions&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Howard,%20S.%20K.&rft.date=2017-10&rft.volume=122&rft.issue=10&rft.spage=9983&rft.epage=9993&rft.pages=9983-9993&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024018&rft_dat=%3Cproquest_cross%3E1966326541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966326541&rft_id=info:pmid/&rfr_iscdi=true |