Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in Magnetic Resonance Force Microscopy

In this paper we formulate an initial-boundary-value-problem describing the three-dimensional motion of a cantilever in a Magnetic Resonance Force Microscopy setup. The equations of motion are then reduced to a modal dynamical system using a Galerkin ansatz and the respective nonlinear forces are ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2017-09, Vol.94, p.174-199
Hauptverfasser: Hacker, E., Gottlieb, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue
container_start_page 174
container_title International journal of non-linear mechanics
container_volume 94
creator Hacker, E.
Gottlieb, O.
description In this paper we formulate an initial-boundary-value-problem describing the three-dimensional motion of a cantilever in a Magnetic Resonance Force Microscopy setup. The equations of motion are then reduced to a modal dynamical system using a Galerkin ansatz and the respective nonlinear forces are expanded to cubic order. The direct application of the asymptotic multiple scales method to the truncated quadratic modal system near a 2:1 internal resonance revealed conditions for periodic and quasiperiodic energy transfer between the transverse in-plane and out-of-plane modes of the MRFM cantilever. However, several discrepancies are found when comparing the asymptotic results to numerical simulations of the full nonlinear system. Therefore, we employ the reconstitution multiple scales method to a modal system incorporating both quadratic and cubic terms and derive an internal resonance bifurcation structure that includes multiple coexisting in-plane and out-of-plane solutions. This structure is verified and reveals a strong dependency on initial conditions in which orbital instabilities and complex out-of-plane non-stationary motions are found. The latter are investigated via numerical integration of the corresponding slowly-varying evolution equations which reveal that breakdown of quasiperiodic tori is associated with symmetry-breaking and emergence of irregular solutions with a dense spectral content. •Derive a three-dimensional cantilever model for Magnetic Resonance Force Microscopy.•Reduce the nonlinear initial-boundary-value problem to low-order dynamical system.•Employ reconstitution multiple-scale asymptotics for quadratic and cubic terms.•Derive bifurcation structure near a 2:1 internal resonance.•Out-of-plane non-stationary motions governed by breakdown of quasiperiodic tori.
doi_str_mv 10.1016/j.ijnonlinmec.2017.04.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966076704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746217302974</els_id><sourcerecordid>1966076704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-149b49eb258ccf6a7e87aa755ecdc84e85ec9985d75c47725b89e0484620533a3</originalsourceid><addsrcrecordid>eNqNkFFLwzAUhYMoOKf_IeJza9KmTfo4hlNhIog-hyy9lZQuqUmm7Nk_bupEfPTlJhzuOdzzIXRJSU4Jra_73PTW2cHYLei8IJTnhOWElkdoRgUXWVWX4hjNCClIxlldnKKzEHqSvIzwGfpcjONgtIrGWew67EE7G6KJu29luxuiGQfAQas0Vdhvx-ii0QF3zmOF44fLosucBWxsBG_VkDKCs8rqScIP6tVCMuCnX3XlfJoPRnsXtBv35-ikU0OAi593jl5WN8_Lu2z9eHu_XKwzXbImZpQ1G9bApqiE1l2tOAiuFK8q0K0WDET6NI2oWl5pxnlRbUQDhIlUmlRlqco5ujrkjt697SBE2bvddHGQtKlrwmtOWNpqDlvTecFDJ0dvtsrvJSVyYi57-Ye5nJhLwmRinrzLgxdSjXcDXgZtIHVuTQIbZevMP1K-ADjSk7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966076704</pqid></control><display><type>article</type><title>Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in Magnetic Resonance Force Microscopy</title><source>Elsevier ScienceDirect Journals</source><creator>Hacker, E. ; Gottlieb, O.</creator><creatorcontrib>Hacker, E. ; Gottlieb, O.</creatorcontrib><description>In this paper we formulate an initial-boundary-value-problem describing the three-dimensional motion of a cantilever in a Magnetic Resonance Force Microscopy setup. The equations of motion are then reduced to a modal dynamical system using a Galerkin ansatz and the respective nonlinear forces are expanded to cubic order. The direct application of the asymptotic multiple scales method to the truncated quadratic modal system near a 2:1 internal resonance revealed conditions for periodic and quasiperiodic energy transfer between the transverse in-plane and out-of-plane modes of the MRFM cantilever. However, several discrepancies are found when comparing the asymptotic results to numerical simulations of the full nonlinear system. Therefore, we employ the reconstitution multiple scales method to a modal system incorporating both quadratic and cubic terms and derive an internal resonance bifurcation structure that includes multiple coexisting in-plane and out-of-plane solutions. This structure is verified and reveals a strong dependency on initial conditions in which orbital instabilities and complex out-of-plane non-stationary motions are found. The latter are investigated via numerical integration of the corresponding slowly-varying evolution equations which reveal that breakdown of quasiperiodic tori is associated with symmetry-breaking and emergence of irregular solutions with a dense spectral content. •Derive a three-dimensional cantilever model for Magnetic Resonance Force Microscopy.•Reduce the nonlinear initial-boundary-value problem to low-order dynamical system.•Employ reconstitution multiple-scale asymptotics for quadratic and cubic terms.•Derive bifurcation structure near a 2:1 internal resonance.•Out-of-plane non-stationary motions governed by breakdown of quasiperiodic tori.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2017.04.013</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>2:1 internal resonance ; Asymptotic methods ; Asymptotic properties ; Bifurcation structure ; Bifurcations ; Boundary value problems ; Computer simulation ; Equations of motion ; Galerkin method ; Initial conditions ; Magnetic resonance ; Magnetic resonance force microscopy ; Mechanics ; Microscopy ; Nonlinear systems ; Numerical integration ; Quasiperiodic energy transfer ; Reconstitution multiple scales ; Simulation ; Three dimensional motion ; Toruses</subject><ispartof>International journal of non-linear mechanics, 2017-09, Vol.94, p.174-199</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-149b49eb258ccf6a7e87aa755ecdc84e85ec9985d75c47725b89e0484620533a3</citedby><cites>FETCH-LOGICAL-c349t-149b49eb258ccf6a7e87aa755ecdc84e85ec9985d75c47725b89e0484620533a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746217302974$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hacker, E.</creatorcontrib><creatorcontrib>Gottlieb, O.</creatorcontrib><title>Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in Magnetic Resonance Force Microscopy</title><title>International journal of non-linear mechanics</title><description>In this paper we formulate an initial-boundary-value-problem describing the three-dimensional motion of a cantilever in a Magnetic Resonance Force Microscopy setup. The equations of motion are then reduced to a modal dynamical system using a Galerkin ansatz and the respective nonlinear forces are expanded to cubic order. The direct application of the asymptotic multiple scales method to the truncated quadratic modal system near a 2:1 internal resonance revealed conditions for periodic and quasiperiodic energy transfer between the transverse in-plane and out-of-plane modes of the MRFM cantilever. However, several discrepancies are found when comparing the asymptotic results to numerical simulations of the full nonlinear system. Therefore, we employ the reconstitution multiple scales method to a modal system incorporating both quadratic and cubic terms and derive an internal resonance bifurcation structure that includes multiple coexisting in-plane and out-of-plane solutions. This structure is verified and reveals a strong dependency on initial conditions in which orbital instabilities and complex out-of-plane non-stationary motions are found. The latter are investigated via numerical integration of the corresponding slowly-varying evolution equations which reveal that breakdown of quasiperiodic tori is associated with symmetry-breaking and emergence of irregular solutions with a dense spectral content. •Derive a three-dimensional cantilever model for Magnetic Resonance Force Microscopy.•Reduce the nonlinear initial-boundary-value problem to low-order dynamical system.•Employ reconstitution multiple-scale asymptotics for quadratic and cubic terms.•Derive bifurcation structure near a 2:1 internal resonance.•Out-of-plane non-stationary motions governed by breakdown of quasiperiodic tori.</description><subject>2:1 internal resonance</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Bifurcation structure</subject><subject>Bifurcations</subject><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Equations of motion</subject><subject>Galerkin method</subject><subject>Initial conditions</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance force microscopy</subject><subject>Mechanics</subject><subject>Microscopy</subject><subject>Nonlinear systems</subject><subject>Numerical integration</subject><subject>Quasiperiodic energy transfer</subject><subject>Reconstitution multiple scales</subject><subject>Simulation</subject><subject>Three dimensional motion</subject><subject>Toruses</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkFFLwzAUhYMoOKf_IeJza9KmTfo4hlNhIog-hyy9lZQuqUmm7Nk_bupEfPTlJhzuOdzzIXRJSU4Jra_73PTW2cHYLei8IJTnhOWElkdoRgUXWVWX4hjNCClIxlldnKKzEHqSvIzwGfpcjONgtIrGWew67EE7G6KJu29luxuiGQfAQas0Vdhvx-ii0QF3zmOF44fLosucBWxsBG_VkDKCs8rqScIP6tVCMuCnX3XlfJoPRnsXtBv35-ikU0OAi593jl5WN8_Lu2z9eHu_XKwzXbImZpQ1G9bApqiE1l2tOAiuFK8q0K0WDET6NI2oWl5pxnlRbUQDhIlUmlRlqco5ujrkjt697SBE2bvddHGQtKlrwmtOWNpqDlvTecFDJ0dvtsrvJSVyYi57-Ye5nJhLwmRinrzLgxdSjXcDXgZtIHVuTQIbZevMP1K-ADjSk7g</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Hacker, E.</creator><creator>Gottlieb, O.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201709</creationdate><title>Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in Magnetic Resonance Force Microscopy</title><author>Hacker, E. ; Gottlieb, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-149b49eb258ccf6a7e87aa755ecdc84e85ec9985d75c47725b89e0484620533a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2:1 internal resonance</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Bifurcation structure</topic><topic>Bifurcations</topic><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Equations of motion</topic><topic>Galerkin method</topic><topic>Initial conditions</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance force microscopy</topic><topic>Mechanics</topic><topic>Microscopy</topic><topic>Nonlinear systems</topic><topic>Numerical integration</topic><topic>Quasiperiodic energy transfer</topic><topic>Reconstitution multiple scales</topic><topic>Simulation</topic><topic>Three dimensional motion</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hacker, E.</creatorcontrib><creatorcontrib>Gottlieb, O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hacker, E.</au><au>Gottlieb, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in Magnetic Resonance Force Microscopy</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2017-09</date><risdate>2017</risdate><volume>94</volume><spage>174</spage><epage>199</epage><pages>174-199</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>In this paper we formulate an initial-boundary-value-problem describing the three-dimensional motion of a cantilever in a Magnetic Resonance Force Microscopy setup. The equations of motion are then reduced to a modal dynamical system using a Galerkin ansatz and the respective nonlinear forces are expanded to cubic order. The direct application of the asymptotic multiple scales method to the truncated quadratic modal system near a 2:1 internal resonance revealed conditions for periodic and quasiperiodic energy transfer between the transverse in-plane and out-of-plane modes of the MRFM cantilever. However, several discrepancies are found when comparing the asymptotic results to numerical simulations of the full nonlinear system. Therefore, we employ the reconstitution multiple scales method to a modal system incorporating both quadratic and cubic terms and derive an internal resonance bifurcation structure that includes multiple coexisting in-plane and out-of-plane solutions. This structure is verified and reveals a strong dependency on initial conditions in which orbital instabilities and complex out-of-plane non-stationary motions are found. The latter are investigated via numerical integration of the corresponding slowly-varying evolution equations which reveal that breakdown of quasiperiodic tori is associated with symmetry-breaking and emergence of irregular solutions with a dense spectral content. •Derive a three-dimensional cantilever model for Magnetic Resonance Force Microscopy.•Reduce the nonlinear initial-boundary-value problem to low-order dynamical system.•Employ reconstitution multiple-scale asymptotics for quadratic and cubic terms.•Derive bifurcation structure near a 2:1 internal resonance.•Out-of-plane non-stationary motions governed by breakdown of quasiperiodic tori.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2017.04.013</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2017-09, Vol.94, p.174-199
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_journals_1966076704
source Elsevier ScienceDirect Journals
subjects 2:1 internal resonance
Asymptotic methods
Asymptotic properties
Bifurcation structure
Bifurcations
Boundary value problems
Computer simulation
Equations of motion
Galerkin method
Initial conditions
Magnetic resonance
Magnetic resonance force microscopy
Mechanics
Microscopy
Nonlinear systems
Numerical integration
Quasiperiodic energy transfer
Reconstitution multiple scales
Simulation
Three dimensional motion
Toruses
title Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in Magnetic Resonance Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20reconstitution%20multiple%20scale%20asymptotics%20for%20a%20two-to-one%20internal%20resonance%20in%20Magnetic%20Resonance%20Force%20Microscopy&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Hacker,%20E.&rft.date=2017-09&rft.volume=94&rft.spage=174&rft.epage=199&rft.pages=174-199&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2017.04.013&rft_dat=%3Cproquest_cross%3E1966076704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966076704&rft_id=info:pmid/&rft_els_id=S0020746217302974&rfr_iscdi=true