Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy

Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-08, Vol.703, p.214-226
Hauptverfasser: Dehestani, Mahdi, Trumble, Kevin, Wang, Han, Wang, Haiyan, Stanciu, Lia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue
container_start_page 214
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 703
creator Dehestani, Mahdi
Trumble, Kevin
Wang, Han
Wang, Haiyan
Stanciu, Lia A.
description Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (< 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably.
doi_str_mv 10.1016/j.msea.2017.07.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966075513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509317309504</els_id><sourcerecordid>1966075513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</originalsourceid><addsrcrecordid>eNp9kM9q3DAQh0VIIJtNXqAnQc_ejCTLtqCXsuRPISWX5ixkedzVsra2krxlb7n2nDfMk0Tu9lwYJIR-38zwEfKJwYoBq263qyGiWXFg9QpyyfKMLFhTi6JUojonC1CcFRKUuCRXMW4BgJUgF-TPXd-jTZH6ng7OBh9TmGyaAlIzdnSDJtEU8jngmKgf6YB2Y0ZnzY7ug99jSA7j36z1IeMuZ1rcmIPzYW669787DBlLZrebws8jzU93wI7e4_vrm4DvI80__nhNLnqzi3jz716Sl_u7H-vH4un54dv661NhRc1ToSTHBirRVm3FOBouGsZbxSyziiveIoAwvTCNko3lDYPaQC0lSsCm7KERS_L51Dev_2vCmPTWT2HMIzVTVTWHmcgpfkrNSmLAXu-DG0w4agZ6Vq63elauZ-UacskyQ19OEOb9Dw6DjtbhaLFzIUvWnXf_wz8AHLaMoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966075513</pqid></control><display><type>article</type><title>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dehestani, Mahdi ; Trumble, Kevin ; Wang, Han ; Wang, Haiyan ; Stanciu, Lia A.</creator><creatorcontrib>Dehestani, Mahdi ; Trumble, Kevin ; Wang, Han ; Wang, Haiyan ; Stanciu, Lia A.</creatorcontrib><description>Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (&lt; 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2017.07.054</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy powders ; Biodegradable metal ; Corrosion effects ; Corrosion rate ; Diffusion ; Electron microscopy ; Ferrous alloys ; Fracture surfaces ; Heat treating ; Heat treatment ; Iron alloys ; Iron-manganese alloy ; Manganese ; Martensite ; Martensitic transformation ; Martensitic transformations ; Mechanical properties ; Microstructure ; Particle size ; Phase transitions ; Powder metallurgy ; Sintering ; Tensile properties ; Transmission electron microscopy (TEM) ; X-ray diffraction</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2017-08, Vol.703, p.214-226</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 4, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</citedby><cites>FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2017.07.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dehestani, Mahdi</creatorcontrib><creatorcontrib>Trumble, Kevin</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Stanciu, Lia A.</creatorcontrib><title>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (&lt; 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably.</description><subject>Alloy powders</subject><subject>Biodegradable metal</subject><subject>Corrosion effects</subject><subject>Corrosion rate</subject><subject>Diffusion</subject><subject>Electron microscopy</subject><subject>Ferrous alloys</subject><subject>Fracture surfaces</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Iron alloys</subject><subject>Iron-manganese alloy</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformation</subject><subject>Martensitic transformations</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>Powder metallurgy</subject><subject>Sintering</subject><subject>Tensile properties</subject><subject>Transmission electron microscopy (TEM)</subject><subject>X-ray diffraction</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9q3DAQh0VIIJtNXqAnQc_ejCTLtqCXsuRPISWX5ixkedzVsra2krxlb7n2nDfMk0Tu9lwYJIR-38zwEfKJwYoBq263qyGiWXFg9QpyyfKMLFhTi6JUojonC1CcFRKUuCRXMW4BgJUgF-TPXd-jTZH6ng7OBh9TmGyaAlIzdnSDJtEU8jngmKgf6YB2Y0ZnzY7ug99jSA7j36z1IeMuZ1rcmIPzYW669787DBlLZrebws8jzU93wI7e4_vrm4DvI80__nhNLnqzi3jz716Sl_u7H-vH4un54dv661NhRc1ToSTHBirRVm3FOBouGsZbxSyziiveIoAwvTCNko3lDYPaQC0lSsCm7KERS_L51Dev_2vCmPTWT2HMIzVTVTWHmcgpfkrNSmLAXu-DG0w4agZ6Vq63elauZ-UacskyQ19OEOb9Dw6DjtbhaLFzIUvWnXf_wz8AHLaMoA</recordid><startdate>20170804</startdate><enddate>20170804</enddate><creator>Dehestani, Mahdi</creator><creator>Trumble, Kevin</creator><creator>Wang, Han</creator><creator>Wang, Haiyan</creator><creator>Stanciu, Lia A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170804</creationdate><title>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</title><author>Dehestani, Mahdi ; Trumble, Kevin ; Wang, Han ; Wang, Haiyan ; Stanciu, Lia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy powders</topic><topic>Biodegradable metal</topic><topic>Corrosion effects</topic><topic>Corrosion rate</topic><topic>Diffusion</topic><topic>Electron microscopy</topic><topic>Ferrous alloys</topic><topic>Fracture surfaces</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Iron alloys</topic><topic>Iron-manganese alloy</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformation</topic><topic>Martensitic transformations</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>Powder metallurgy</topic><topic>Sintering</topic><topic>Tensile properties</topic><topic>Transmission electron microscopy (TEM)</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehestani, Mahdi</creatorcontrib><creatorcontrib>Trumble, Kevin</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Stanciu, Lia A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehestani, Mahdi</au><au>Trumble, Kevin</au><au>Wang, Han</au><au>Wang, Haiyan</au><au>Stanciu, Lia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-08-04</date><risdate>2017</risdate><volume>703</volume><spage>214</spage><epage>226</epage><pages>214-226</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (&lt; 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2017.07.054</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-08, Vol.703, p.214-226
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_1966075513
source Access via ScienceDirect (Elsevier)
subjects Alloy powders
Biodegradable metal
Corrosion effects
Corrosion rate
Diffusion
Electron microscopy
Ferrous alloys
Fracture surfaces
Heat treating
Heat treatment
Iron alloys
Iron-manganese alloy
Manganese
Martensite
Martensitic transformation
Martensitic transformations
Mechanical properties
Microstructure
Particle size
Phase transitions
Powder metallurgy
Sintering
Tensile properties
Transmission electron microscopy (TEM)
X-ray diffraction
title Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20microstructure%20and%20heat%20treatment%20on%20mechanical%20properties%20and%20corrosion%20behavior%20of%20powder%20metallurgy%20derived%20Fe%E2%80%9330Mn%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Dehestani,%20Mahdi&rft.date=2017-08-04&rft.volume=703&rft.spage=214&rft.epage=226&rft.pages=214-226&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2017.07.054&rft_dat=%3Cproquest_cross%3E1966075513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966075513&rft_id=info:pmid/&rft_els_id=S0921509317309504&rfr_iscdi=true