Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy
Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments o...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-08, Vol.703, p.214-226 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | |
container_start_page | 214 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 703 |
creator | Dehestani, Mahdi Trumble, Kevin Wang, Han Wang, Haiyan Stanciu, Lia A. |
description | Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (< 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably. |
doi_str_mv | 10.1016/j.msea.2017.07.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966075513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509317309504</els_id><sourcerecordid>1966075513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</originalsourceid><addsrcrecordid>eNp9kM9q3DAQh0VIIJtNXqAnQc_ejCTLtqCXsuRPISWX5ixkedzVsra2krxlb7n2nDfMk0Tu9lwYJIR-38zwEfKJwYoBq263qyGiWXFg9QpyyfKMLFhTi6JUojonC1CcFRKUuCRXMW4BgJUgF-TPXd-jTZH6ng7OBh9TmGyaAlIzdnSDJtEU8jngmKgf6YB2Y0ZnzY7ug99jSA7j36z1IeMuZ1rcmIPzYW669787DBlLZrebws8jzU93wI7e4_vrm4DvI80__nhNLnqzi3jz716Sl_u7H-vH4un54dv661NhRc1ToSTHBirRVm3FOBouGsZbxSyziiveIoAwvTCNko3lDYPaQC0lSsCm7KERS_L51Dev_2vCmPTWT2HMIzVTVTWHmcgpfkrNSmLAXu-DG0w4agZ6Vq63elauZ-UacskyQ19OEOb9Dw6DjtbhaLFzIUvWnXf_wz8AHLaMoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966075513</pqid></control><display><type>article</type><title>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dehestani, Mahdi ; Trumble, Kevin ; Wang, Han ; Wang, Haiyan ; Stanciu, Lia A.</creator><creatorcontrib>Dehestani, Mahdi ; Trumble, Kevin ; Wang, Han ; Wang, Haiyan ; Stanciu, Lia A.</creatorcontrib><description>Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (< 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2017.07.054</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy powders ; Biodegradable metal ; Corrosion effects ; Corrosion rate ; Diffusion ; Electron microscopy ; Ferrous alloys ; Fracture surfaces ; Heat treating ; Heat treatment ; Iron alloys ; Iron-manganese alloy ; Manganese ; Martensite ; Martensitic transformation ; Martensitic transformations ; Mechanical properties ; Microstructure ; Particle size ; Phase transitions ; Powder metallurgy ; Sintering ; Tensile properties ; Transmission electron microscopy (TEM) ; X-ray diffraction</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-08, Vol.703, p.214-226</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 4, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</citedby><cites>FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2017.07.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dehestani, Mahdi</creatorcontrib><creatorcontrib>Trumble, Kevin</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Stanciu, Lia A.</creatorcontrib><title>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (< 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably.</description><subject>Alloy powders</subject><subject>Biodegradable metal</subject><subject>Corrosion effects</subject><subject>Corrosion rate</subject><subject>Diffusion</subject><subject>Electron microscopy</subject><subject>Ferrous alloys</subject><subject>Fracture surfaces</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Iron alloys</subject><subject>Iron-manganese alloy</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformation</subject><subject>Martensitic transformations</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>Powder metallurgy</subject><subject>Sintering</subject><subject>Tensile properties</subject><subject>Transmission electron microscopy (TEM)</subject><subject>X-ray diffraction</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9q3DAQh0VIIJtNXqAnQc_ejCTLtqCXsuRPISWX5ixkedzVsra2krxlb7n2nDfMk0Tu9lwYJIR-38zwEfKJwYoBq263qyGiWXFg9QpyyfKMLFhTi6JUojonC1CcFRKUuCRXMW4BgJUgF-TPXd-jTZH6ng7OBh9TmGyaAlIzdnSDJtEU8jngmKgf6YB2Y0ZnzY7ug99jSA7j36z1IeMuZ1rcmIPzYW669787DBlLZrebws8jzU93wI7e4_vrm4DvI80__nhNLnqzi3jz716Sl_u7H-vH4un54dv661NhRc1ToSTHBirRVm3FOBouGsZbxSyziiveIoAwvTCNko3lDYPaQC0lSsCm7KERS_L51Dev_2vCmPTWT2HMIzVTVTWHmcgpfkrNSmLAXu-DG0w4agZ6Vq63elauZ-UacskyQ19OEOb9Dw6DjtbhaLFzIUvWnXf_wz8AHLaMoA</recordid><startdate>20170804</startdate><enddate>20170804</enddate><creator>Dehestani, Mahdi</creator><creator>Trumble, Kevin</creator><creator>Wang, Han</creator><creator>Wang, Haiyan</creator><creator>Stanciu, Lia A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170804</creationdate><title>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</title><author>Dehestani, Mahdi ; Trumble, Kevin ; Wang, Han ; Wang, Haiyan ; Stanciu, Lia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-952e8063b6b612ea23812b91c1c9292be003af3a8958c28107a0755e50e84f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy powders</topic><topic>Biodegradable metal</topic><topic>Corrosion effects</topic><topic>Corrosion rate</topic><topic>Diffusion</topic><topic>Electron microscopy</topic><topic>Ferrous alloys</topic><topic>Fracture surfaces</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Iron alloys</topic><topic>Iron-manganese alloy</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformation</topic><topic>Martensitic transformations</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>Powder metallurgy</topic><topic>Sintering</topic><topic>Tensile properties</topic><topic>Transmission electron microscopy (TEM)</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehestani, Mahdi</creatorcontrib><creatorcontrib>Trumble, Kevin</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Stanciu, Lia A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehestani, Mahdi</au><au>Trumble, Kevin</au><au>Wang, Han</au><au>Wang, Haiyan</au><au>Stanciu, Lia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-08-04</date><risdate>2017</risdate><volume>703</volume><spage>214</spage><epage>226</epage><pages>214-226</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Microstructures, mechanical properties and corrosion rates (CR) of powder metallurgy derived Fe–Mn alloys have been investigated with respect to the particle size of the iron (Fe) powder and the extent of manganese (Mn) diffusion and alloying during sintering. By applying different heat treatments on Fe–30wt%Mn alloy, a phase transformation (γ → ε) for this composition and its influence on mechanical and corrosion properties have been studied. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) have been conducted to characterize the transformation and identify the austenite (γ) and epsilon martensite (ε) phases in the system. Microstructures and tensile fracture surfaces were examined by Scanning Electron Microscope (SEM). The results show that the Fe particle size affects the overall Mn alloying significantly, i.e., coarse Fe particles (30–200µm) result in Fe–Mn alloys with σy = 48.2MPa, σu = 73.6MPa, fracture strain of 2.42% and CR = 1.36mmpy, while ultrafine particle size (< 44µm) leads to σy = 134.2MPa, σu = 215.8MPa, fracture strain of 10.91% and CR = 0.29mmpy. Heat treatments and formation of ε martensite have shown minor effect on tensile properties, but increased hardness and corrosion rate noticeably.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2017.07.054</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-08, Vol.703, p.214-226 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_1966075513 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alloy powders Biodegradable metal Corrosion effects Corrosion rate Diffusion Electron microscopy Ferrous alloys Fracture surfaces Heat treating Heat treatment Iron alloys Iron-manganese alloy Manganese Martensite Martensitic transformation Martensitic transformations Mechanical properties Microstructure Particle size Phase transitions Powder metallurgy Sintering Tensile properties Transmission electron microscopy (TEM) X-ray diffraction |
title | Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20microstructure%20and%20heat%20treatment%20on%20mechanical%20properties%20and%20corrosion%20behavior%20of%20powder%20metallurgy%20derived%20Fe%E2%80%9330Mn%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Dehestani,%20Mahdi&rft.date=2017-08-04&rft.volume=703&rft.spage=214&rft.epage=226&rft.pages=214-226&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2017.07.054&rft_dat=%3Cproquest_cross%3E1966075513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966075513&rft_id=info:pmid/&rft_els_id=S0921509317309504&rfr_iscdi=true |