Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry

The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2017-12, Vol.53 (12), p.3421-3431
Hauptverfasser: Szucki, Michal, Suchy, J. S., Lelito, J., Malinowski, P., Sobczyk, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3431
container_issue 12
container_start_page 3421
container_title Heat and mass transfer
container_volume 53
creator Szucki, Michal
Suchy, J. S.
Lelito, J.
Malinowski, P.
Sobczyk, J.
description The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.
doi_str_mv 10.1007/s00231-017-2069-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965812033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965812033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMQfu4jiJx1LxT6rEArPlOG7rKrGD7Qzl05NSBhiYTrr3e-9Oj5BrhFsEqO4iQM4wA6yyHEqR8RMyw4LlGWKNp2QGoqiyqkA8Jxcx7ia6LHI2I24xDJ3VKlnvqF_TtDW0UylZbei979Jnr5yjvUlb39K1DzTafuz-4L3vJsl2nXUbOgSvTYzUum9Nq5gOa-vaMaawvyRna9VFc_Uz5-T98eFt-ZytXp9elotVphkXKWtEpYWuc9NWhnPAkhe1ZkpwDRU0aEStRGHAtLzMTYlGAYimFoaVvGwaaNic3Bxzp38-RhOT3PkxuOmkRFHyGnNgbKLwSOngYwxmLYdgexX2EkEeapXHWuVUqzzUKvnkyY-eOLFuY8Kv5H9NX2Yde4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965812033</pqid></control><display><type>article</type><title>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Szucki, Michal ; Suchy, J. S. ; Lelito, J. ; Malinowski, P. ; Sobczyk, J.</creator><creatorcontrib>Szucki, Michal ; Suchy, J. S. ; Lelito, J. ; Malinowski, P. ; Sobczyk, J.</creatorcontrib><description>The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-017-2069-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational fluid dynamics ; Computer simulation ; Engineering ; Engineering Thermodynamics ; Free surfaces ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Molds ; Momentum transfer ; Original ; Pressure casting ; Shape memory ; Stability ; Stability analysis ; Thermodynamics ; Two phase flow</subject><ispartof>Heat and mass transfer, 2017-12, Vol.53 (12), p.3421-3431</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</citedby><cites>FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</cites><orcidid>0000-0002-2675-1836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-017-2069-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-017-2069-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Szucki, Michal</creatorcontrib><creatorcontrib>Suchy, J. S.</creatorcontrib><creatorcontrib>Lelito, J.</creatorcontrib><creatorcontrib>Malinowski, P.</creatorcontrib><creatorcontrib>Sobczyk, J.</creatorcontrib><title>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Free surfaces</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Molds</subject><subject>Momentum transfer</subject><subject>Original</subject><subject>Pressure casting</subject><subject>Shape memory</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Thermodynamics</subject><subject>Two phase flow</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMQfu4jiJx1LxT6rEArPlOG7rKrGD7Qzl05NSBhiYTrr3e-9Oj5BrhFsEqO4iQM4wA6yyHEqR8RMyw4LlGWKNp2QGoqiyqkA8Jxcx7ia6LHI2I24xDJ3VKlnvqF_TtDW0UylZbei979Jnr5yjvUlb39K1DzTafuz-4L3vJsl2nXUbOgSvTYzUum9Nq5gOa-vaMaawvyRna9VFc_Uz5-T98eFt-ZytXp9elotVphkXKWtEpYWuc9NWhnPAkhe1ZkpwDRU0aEStRGHAtLzMTYlGAYimFoaVvGwaaNic3Bxzp38-RhOT3PkxuOmkRFHyGnNgbKLwSOngYwxmLYdgexX2EkEeapXHWuVUqzzUKvnkyY-eOLFuY8Kv5H9NX2Yde4o</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Szucki, Michal</creator><creator>Suchy, J. S.</creator><creator>Lelito, J.</creator><creator>Malinowski, P.</creator><creator>Sobczyk, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2675-1836</orcidid></search><sort><creationdate>20171201</creationdate><title>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</title><author>Szucki, Michal ; Suchy, J. S. ; Lelito, J. ; Malinowski, P. ; Sobczyk, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Free surfaces</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Molds</topic><topic>Momentum transfer</topic><topic>Original</topic><topic>Pressure casting</topic><topic>Shape memory</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Thermodynamics</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szucki, Michal</creatorcontrib><creatorcontrib>Suchy, J. S.</creatorcontrib><creatorcontrib>Lelito, J.</creatorcontrib><creatorcontrib>Malinowski, P.</creatorcontrib><creatorcontrib>Sobczyk, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szucki, Michal</au><au>Suchy, J. S.</au><au>Lelito, J.</au><au>Malinowski, P.</au><au>Sobczyk, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>53</volume><issue>12</issue><spage>3421</spage><epage>3431</epage><pages>3421-3431</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-017-2069-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2675-1836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2017-12, Vol.53 (12), p.3421-3431
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_1965812033
source SpringerLink Journals - AutoHoldings
subjects Computational fluid dynamics
Computer simulation
Engineering
Engineering Thermodynamics
Free surfaces
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Molds
Momentum transfer
Original
Pressure casting
Shape memory
Stability
Stability analysis
Thermodynamics
Two phase flow
title Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20lattice%20Boltzmann%20method%20for%20simulation%20of%20the%20mold%20filling%20process%20in%20the%20casting%20industry&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Szucki,%20Michal&rft.date=2017-12-01&rft.volume=53&rft.issue=12&rft.spage=3421&rft.epage=3431&rft.pages=3421-3431&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-017-2069-5&rft_dat=%3Cproquest_cross%3E1965812033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965812033&rft_id=info:pmid/&rfr_iscdi=true