Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry
The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentu...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2017-12, Vol.53 (12), p.3421-3431 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3431 |
---|---|
container_issue | 12 |
container_start_page | 3421 |
container_title | Heat and mass transfer |
container_volume | 53 |
creator | Szucki, Michal Suchy, J. S. Lelito, J. Malinowski, P. Sobczyk, J. |
description | The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows. |
doi_str_mv | 10.1007/s00231-017-2069-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965812033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965812033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMQfu4jiJx1LxT6rEArPlOG7rKrGD7Qzl05NSBhiYTrr3e-9Oj5BrhFsEqO4iQM4wA6yyHEqR8RMyw4LlGWKNp2QGoqiyqkA8Jxcx7ia6LHI2I24xDJ3VKlnvqF_TtDW0UylZbei979Jnr5yjvUlb39K1DzTafuz-4L3vJsl2nXUbOgSvTYzUum9Nq5gOa-vaMaawvyRna9VFc_Uz5-T98eFt-ZytXp9elotVphkXKWtEpYWuc9NWhnPAkhe1ZkpwDRU0aEStRGHAtLzMTYlGAYimFoaVvGwaaNic3Bxzp38-RhOT3PkxuOmkRFHyGnNgbKLwSOngYwxmLYdgexX2EkEeapXHWuVUqzzUKvnkyY-eOLFuY8Kv5H9NX2Yde4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965812033</pqid></control><display><type>article</type><title>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Szucki, Michal ; Suchy, J. S. ; Lelito, J. ; Malinowski, P. ; Sobczyk, J.</creator><creatorcontrib>Szucki, Michal ; Suchy, J. S. ; Lelito, J. ; Malinowski, P. ; Sobczyk, J.</creatorcontrib><description>The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-017-2069-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational fluid dynamics ; Computer simulation ; Engineering ; Engineering Thermodynamics ; Free surfaces ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Molds ; Momentum transfer ; Original ; Pressure casting ; Shape memory ; Stability ; Stability analysis ; Thermodynamics ; Two phase flow</subject><ispartof>Heat and mass transfer, 2017-12, Vol.53 (12), p.3421-3431</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</citedby><cites>FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</cites><orcidid>0000-0002-2675-1836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-017-2069-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-017-2069-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Szucki, Michal</creatorcontrib><creatorcontrib>Suchy, J. S.</creatorcontrib><creatorcontrib>Lelito, J.</creatorcontrib><creatorcontrib>Malinowski, P.</creatorcontrib><creatorcontrib>Sobczyk, J.</creatorcontrib><title>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Free surfaces</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Molds</subject><subject>Momentum transfer</subject><subject>Original</subject><subject>Pressure casting</subject><subject>Shape memory</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Thermodynamics</subject><subject>Two phase flow</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMQfu4jiJx1LxT6rEArPlOG7rKrGD7Qzl05NSBhiYTrr3e-9Oj5BrhFsEqO4iQM4wA6yyHEqR8RMyw4LlGWKNp2QGoqiyqkA8Jxcx7ia6LHI2I24xDJ3VKlnvqF_TtDW0UylZbei979Jnr5yjvUlb39K1DzTafuz-4L3vJsl2nXUbOgSvTYzUum9Nq5gOa-vaMaawvyRna9VFc_Uz5-T98eFt-ZytXp9elotVphkXKWtEpYWuc9NWhnPAkhe1ZkpwDRU0aEStRGHAtLzMTYlGAYimFoaVvGwaaNic3Bxzp38-RhOT3PkxuOmkRFHyGnNgbKLwSOngYwxmLYdgexX2EkEeapXHWuVUqzzUKvnkyY-eOLFuY8Kv5H9NX2Yde4o</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Szucki, Michal</creator><creator>Suchy, J. S.</creator><creator>Lelito, J.</creator><creator>Malinowski, P.</creator><creator>Sobczyk, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2675-1836</orcidid></search><sort><creationdate>20171201</creationdate><title>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</title><author>Szucki, Michal ; Suchy, J. S. ; Lelito, J. ; Malinowski, P. ; Sobczyk, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b97c9c82ed7e55016548c3a95c070b1e98a94e0ed562e61ea009b89e3656bb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Free surfaces</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Molds</topic><topic>Momentum transfer</topic><topic>Original</topic><topic>Pressure casting</topic><topic>Shape memory</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Thermodynamics</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szucki, Michal</creatorcontrib><creatorcontrib>Suchy, J. S.</creatorcontrib><creatorcontrib>Lelito, J.</creatorcontrib><creatorcontrib>Malinowski, P.</creatorcontrib><creatorcontrib>Sobczyk, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szucki, Michal</au><au>Suchy, J. S.</au><au>Lelito, J.</au><au>Malinowski, P.</au><au>Sobczyk, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>53</volume><issue>12</issue><spage>3421</spage><epage>3431</epage><pages>3421-3431</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-017-2069-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2675-1836</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7411 |
ispartof | Heat and mass transfer, 2017-12, Vol.53 (12), p.3421-3431 |
issn | 0947-7411 1432-1181 |
language | eng |
recordid | cdi_proquest_journals_1965812033 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational fluid dynamics Computer simulation Engineering Engineering Thermodynamics Free surfaces Heat and Mass Transfer Industrial Chemistry/Chemical Engineering Molds Momentum transfer Original Pressure casting Shape memory Stability Stability analysis Thermodynamics Two phase flow |
title | Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20lattice%20Boltzmann%20method%20for%20simulation%20of%20the%20mold%20filling%20process%20in%20the%20casting%20industry&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Szucki,%20Michal&rft.date=2017-12-01&rft.volume=53&rft.issue=12&rft.spage=3421&rft.epage=3431&rft.pages=3421-3431&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-017-2069-5&rft_dat=%3Cproquest_cross%3E1965812033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965812033&rft_id=info:pmid/&rfr_iscdi=true |