The possible physical mechanism for the EAP–SR co-action

The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia–West Pacific Region (EA–WP) associated with the co-action of East Asia/Pacific teleconnection–Silk Road teleconnection (EAP–SR) are investigated in this study. The compositions of EAP–SR phase anomalie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2018-08, Vol.51 (4), p.1499-1516
Hauptverfasser: Gong, Zhiqiang, Feng, Guolin, Dogar, Muhammad Mubashar, Huang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1516
container_issue 4
container_start_page 1499
container_title Climate dynamics
container_volume 51
creator Gong, Zhiqiang
Feng, Guolin
Dogar, Muhammad Mubashar
Huang, Gang
description The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia–West Pacific Region (EA–WP) associated with the co-action of East Asia/Pacific teleconnection–Silk Road teleconnection (EAP–SR) are investigated in this study. The compositions of EAP–SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ −), pattern III (− −), and pattern IV (− +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA–WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP–SR co-action upon the summer precipitation in EA–WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula a
doi_str_mv 10.1007/s00382-017-3967-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1965520293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547000856</galeid><sourcerecordid>A547000856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-f278d51d7d1430cc885fcbabc3e782ee37ac54559e12885a2527e543a8190b8d3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMoWKsP4G5AEFyMntwmGXdF6gUEpa3rkGYynSnTSU2mYHe-g2_ok5gyLuxCskg4-b5czo_QOYZrDCBuAgCVJAUsUppnImUHaIAZjRWZs0M0gJxCKrjgx-gkhCUAZpkgA3Q7q2yydiHU8yYuqm2ojW6SlTWVbuuwSkrnky4y49Hr9-fXdJIYl2rT1a49RUelboI9-52H6O1-PLt7TJ9fHp7uRs-pYRnt0pIIWXBciCK-B4yRkpdmrueGWiGJtVRowxnnucUk7mnCibCcUS1xDnNZ0CG66M9de_e-saFTS7fxbbxS4TzjnADJaaSue2qhG6vqtnSd1yaOwq5q41pb1rE-4kwAgORZFK72hMh09qNb6E0I6mk62Wcv_7CV1U1XBddsdm0I-yDuQeNjT70t1drXK-23CoPaBaX6oFQMSu2CUiw6pHdCZNuF9X_-96_0A66Hkm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965520293</pqid></control><display><type>article</type><title>The possible physical mechanism for the EAP–SR co-action</title><source>SpringerLink Journals</source><creator>Gong, Zhiqiang ; Feng, Guolin ; Dogar, Muhammad Mubashar ; Huang, Gang</creator><creatorcontrib>Gong, Zhiqiang ; Feng, Guolin ; Dogar, Muhammad Mubashar ; Huang, Gang</creatorcontrib><description>The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia–West Pacific Region (EA–WP) associated with the co-action of East Asia/Pacific teleconnection–Silk Road teleconnection (EAP–SR) are investigated in this study. The compositions of EAP–SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ −), pattern III (− −), and pattern IV (− +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA–WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP–SR co-action upon the summer precipitation in EA–WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA–WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-017-3967-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Atmospheric circulation ; Climatology ; Convection ; Convective activity ; Dipoles ; Direction ; Drought ; Dynamic height ; Earth and Environmental Science ; Earth Sciences ; Environmental aspects ; Geophysics/Geodesy ; Geopotential ; Geopotential height ; Hadley circulation ; Height anomalies ; Influence ; Jet stream ; Jet streams (meteorology) ; Middle troposphere ; Monsoons ; Oceanography ; Phase contrast ; Planetary waves ; Precipitation ; Precipitation anomalies ; Propagation ; Rossby waves ; Sea surface ; Sea surface temperature ; Spatial distribution ; Summer ; Summer precipitation ; Surface temperature ; Teleconnections ; Tropical circulation ; Tropical climate ; Troposphere ; Vorticity ; Wave propagation ; Wind</subject><ispartof>Climate dynamics, 2018-08, Vol.51 (4), p.1499-1516</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-f278d51d7d1430cc885fcbabc3e782ee37ac54559e12885a2527e543a8190b8d3</citedby><cites>FETCH-LOGICAL-c463t-f278d51d7d1430cc885fcbabc3e782ee37ac54559e12885a2527e543a8190b8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-017-3967-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-017-3967-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gong, Zhiqiang</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><creatorcontrib>Dogar, Muhammad Mubashar</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><title>The possible physical mechanism for the EAP–SR co-action</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia–West Pacific Region (EA–WP) associated with the co-action of East Asia/Pacific teleconnection–Silk Road teleconnection (EAP–SR) are investigated in this study. The compositions of EAP–SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ −), pattern III (− −), and pattern IV (− +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA–WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP–SR co-action upon the summer precipitation in EA–WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA–WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.</description><subject>Anomalies</subject><subject>Atmospheric circulation</subject><subject>Climatology</subject><subject>Convection</subject><subject>Convective activity</subject><subject>Dipoles</subject><subject>Direction</subject><subject>Drought</subject><subject>Dynamic height</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental aspects</subject><subject>Geophysics/Geodesy</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>Hadley circulation</subject><subject>Height anomalies</subject><subject>Influence</subject><subject>Jet stream</subject><subject>Jet streams (meteorology)</subject><subject>Middle troposphere</subject><subject>Monsoons</subject><subject>Oceanography</subject><subject>Phase contrast</subject><subject>Planetary waves</subject><subject>Precipitation</subject><subject>Precipitation anomalies</subject><subject>Propagation</subject><subject>Rossby waves</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Spatial distribution</subject><subject>Summer</subject><subject>Summer precipitation</subject><subject>Surface temperature</subject><subject>Teleconnections</subject><subject>Tropical circulation</subject><subject>Tropical climate</subject><subject>Troposphere</subject><subject>Vorticity</subject><subject>Wave propagation</subject><subject>Wind</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctKAzEUhoMoWKsP4G5AEFyMntwmGXdF6gUEpa3rkGYynSnTSU2mYHe-g2_ok5gyLuxCskg4-b5czo_QOYZrDCBuAgCVJAUsUppnImUHaIAZjRWZs0M0gJxCKrjgx-gkhCUAZpkgA3Q7q2yydiHU8yYuqm2ojW6SlTWVbuuwSkrnky4y49Hr9-fXdJIYl2rT1a49RUelboI9-52H6O1-PLt7TJ9fHp7uRs-pYRnt0pIIWXBciCK-B4yRkpdmrueGWiGJtVRowxnnucUk7mnCibCcUS1xDnNZ0CG66M9de_e-saFTS7fxbbxS4TzjnADJaaSue2qhG6vqtnSd1yaOwq5q41pb1rE-4kwAgORZFK72hMh09qNb6E0I6mk62Wcv_7CV1U1XBddsdm0I-yDuQeNjT70t1drXK-23CoPaBaX6oFQMSu2CUiw6pHdCZNuF9X_-96_0A66Hkm0</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Gong, Zhiqiang</creator><creator>Feng, Guolin</creator><creator>Dogar, Muhammad Mubashar</creator><creator>Huang, Gang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180801</creationdate><title>The possible physical mechanism for the EAP–SR co-action</title><author>Gong, Zhiqiang ; Feng, Guolin ; Dogar, Muhammad Mubashar ; Huang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-f278d51d7d1430cc885fcbabc3e782ee37ac54559e12885a2527e543a8190b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomalies</topic><topic>Atmospheric circulation</topic><topic>Climatology</topic><topic>Convection</topic><topic>Convective activity</topic><topic>Dipoles</topic><topic>Direction</topic><topic>Drought</topic><topic>Dynamic height</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental aspects</topic><topic>Geophysics/Geodesy</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>Hadley circulation</topic><topic>Height anomalies</topic><topic>Influence</topic><topic>Jet stream</topic><topic>Jet streams (meteorology)</topic><topic>Middle troposphere</topic><topic>Monsoons</topic><topic>Oceanography</topic><topic>Phase contrast</topic><topic>Planetary waves</topic><topic>Precipitation</topic><topic>Precipitation anomalies</topic><topic>Propagation</topic><topic>Rossby waves</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Spatial distribution</topic><topic>Summer</topic><topic>Summer precipitation</topic><topic>Surface temperature</topic><topic>Teleconnections</topic><topic>Tropical circulation</topic><topic>Tropical climate</topic><topic>Troposphere</topic><topic>Vorticity</topic><topic>Wave propagation</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Zhiqiang</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><creatorcontrib>Dogar, Muhammad Mubashar</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Zhiqiang</au><au>Feng, Guolin</au><au>Dogar, Muhammad Mubashar</au><au>Huang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The possible physical mechanism for the EAP–SR co-action</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>51</volume><issue>4</issue><spage>1499</spage><epage>1516</epage><pages>1499-1516</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia–West Pacific Region (EA–WP) associated with the co-action of East Asia/Pacific teleconnection–Silk Road teleconnection (EAP–SR) are investigated in this study. The compositions of EAP–SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ −), pattern III (− −), and pattern IV (− +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA–WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP–SR co-action upon the summer precipitation in EA–WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA–WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-017-3967-4</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2018-08, Vol.51 (4), p.1499-1516
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_1965520293
source SpringerLink Journals
subjects Anomalies
Atmospheric circulation
Climatology
Convection
Convective activity
Dipoles
Direction
Drought
Dynamic height
Earth and Environmental Science
Earth Sciences
Environmental aspects
Geophysics/Geodesy
Geopotential
Geopotential height
Hadley circulation
Height anomalies
Influence
Jet stream
Jet streams (meteorology)
Middle troposphere
Monsoons
Oceanography
Phase contrast
Planetary waves
Precipitation
Precipitation anomalies
Propagation
Rossby waves
Sea surface
Sea surface temperature
Spatial distribution
Summer
Summer precipitation
Surface temperature
Teleconnections
Tropical circulation
Tropical climate
Troposphere
Vorticity
Wave propagation
Wind
title The possible physical mechanism for the EAP–SR co-action
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20possible%20physical%20mechanism%20for%20the%20EAP%E2%80%93SR%20co-action&rft.jtitle=Climate%20dynamics&rft.au=Gong,%20Zhiqiang&rft.date=2018-08-01&rft.volume=51&rft.issue=4&rft.spage=1499&rft.epage=1516&rft.pages=1499-1516&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-017-3967-4&rft_dat=%3Cgale_proqu%3EA547000856%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965520293&rft_id=info:pmid/&rft_galeid=A547000856&rfr_iscdi=true