A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip

The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2017-12, Vol.60 (6), p.923-942
Hauptverfasser: Erdle, Hannes, Böhlke, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 6
container_start_page 923
container_title Computational mechanics
container_volume 60
creator Erdle, Hannes
Böhlke, Thomas
description The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.
doi_str_mv 10.1007/s00466-017-1447-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1965286936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514774191</galeid><sourcerecordid>A514774191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMoOK7-AG8BTx56TaXTSec4LH4sLAh-nENNuro3S09nTNLo_HsztIJ7kBwSKu9TVS8vY69BXIMQ5l0WQmndCDANKGUa84TtQLWyEVaqp2xXP_rGaNM9Zy9yfhACur7tdizs-ZRwCLQU7tM5F5z5acZcgg_lzMs9xXTmY0x8xjQRH6i-j1hCXDL_Gco9Rz6E7ONSwrLGNXP0fj2uMxYa_nbieQ6nl-zZiHOmV3_uK_b9w_tvN5-au88fb2_2d41ve1saeUCw3dgjSqWgI68VqVZ1Xh8MKKukRW8ktprG6sADDK0ke5DaeAEVba_Ym63vKcUfK-XiHuKaljrSgdWd7LVtdVVdb6oJZ3JhGWNJ6OsZ6BiqGxpDre87UMYosFCBt4-Ai2P6VSZcc3a3X7881sKm9SnmnGh0pxSOmM4OhLvE5ba4XE3FXeJypjJyY3LVLhOlf9b-L_QbN-GX1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965286936</pqid></control><display><type>article</type><title>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</title><source>SpringerLink Journals</source><creator>Erdle, Hannes ; Böhlke, Thomas</creator><creatorcontrib>Erdle, Hannes ; Böhlke, Thomas</creatorcontrib><description>The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-017-1447-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Classical and Continuum Physics ; Computational Science and Engineering ; Computer simulation ; Corrosion prevention ; Crystals ; Deformation ; Dislocations ; Engineering ; Finite element method ; Grain boundaries ; Kinematics ; Mathematical analysis ; Mathematical models ; Original Paper ; Plastic properties ; Recrystallization ; Slip ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2017-12, Vol.60 (6), p.923-942</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</citedby><cites>FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-017-1447-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-017-1447-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Erdle, Hannes</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><title>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Corrosion prevention</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Grain boundaries</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Plastic properties</subject><subject>Recrystallization</subject><subject>Slip</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU2LFDEQhoMoOK7-AG8BTx56TaXTSec4LH4sLAh-nENNuro3S09nTNLo_HsztIJ7kBwSKu9TVS8vY69BXIMQ5l0WQmndCDANKGUa84TtQLWyEVaqp2xXP_rGaNM9Zy9yfhACur7tdizs-ZRwCLQU7tM5F5z5acZcgg_lzMs9xXTmY0x8xjQRH6i-j1hCXDL_Gco9Rz6E7ONSwrLGNXP0fj2uMxYa_nbieQ6nl-zZiHOmV3_uK_b9w_tvN5-au88fb2_2d41ve1saeUCw3dgjSqWgI68VqVZ1Xh8MKKukRW8ktprG6sADDK0ke5DaeAEVba_Ym63vKcUfK-XiHuKaljrSgdWd7LVtdVVdb6oJZ3JhGWNJ6OsZ6BiqGxpDre87UMYosFCBt4-Ai2P6VSZcc3a3X7881sKm9SnmnGh0pxSOmM4OhLvE5ba4XE3FXeJypjJyY3LVLhOlf9b-L_QbN-GX1Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Erdle, Hannes</creator><creator>Böhlke, Thomas</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20171201</creationdate><title>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</title><author>Erdle, Hannes ; Böhlke, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Corrosion prevention</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Grain boundaries</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Plastic properties</topic><topic>Recrystallization</topic><topic>Slip</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdle, Hannes</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdle, Hannes</au><au>Böhlke, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>60</volume><issue>6</issue><spage>923</spage><epage>942</epage><pages>923-942</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-017-1447-7</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2017-12, Vol.60 (6), p.923-942
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_1965286936
source SpringerLink Journals
subjects Analysis
Classical and Continuum Physics
Computational Science and Engineering
Computer simulation
Corrosion prevention
Crystals
Deformation
Dislocations
Engineering
Finite element method
Grain boundaries
Kinematics
Mathematical analysis
Mathematical models
Original Paper
Plastic properties
Recrystallization
Slip
Theoretical and Applied Mechanics
title A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gradient%20crystal%20plasticity%20theory%20for%20large%20deformations%20with%20a%20discontinuous%20accumulated%20plastic%20slip&rft.jtitle=Computational%20mechanics&rft.au=Erdle,%20Hannes&rft.date=2017-12-01&rft.volume=60&rft.issue=6&rft.spage=923&rft.epage=942&rft.pages=923-942&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-017-1447-7&rft_dat=%3Cgale_proqu%3EA514774191%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965286936&rft_id=info:pmid/&rft_galeid=A514774191&rfr_iscdi=true