A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip
The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which p...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2017-12, Vol.60 (6), p.923-942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 6 |
container_start_page | 923 |
container_title | Computational mechanics |
container_volume | 60 |
creator | Erdle, Hannes Böhlke, Thomas |
description | The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results. |
doi_str_mv | 10.1007/s00466-017-1447-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1965286936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514774191</galeid><sourcerecordid>A514774191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMoOK7-AG8BTx56TaXTSec4LH4sLAh-nENNuro3S09nTNLo_HsztIJ7kBwSKu9TVS8vY69BXIMQ5l0WQmndCDANKGUa84TtQLWyEVaqp2xXP_rGaNM9Zy9yfhACur7tdizs-ZRwCLQU7tM5F5z5acZcgg_lzMs9xXTmY0x8xjQRH6i-j1hCXDL_Gco9Rz6E7ONSwrLGNXP0fj2uMxYa_nbieQ6nl-zZiHOmV3_uK_b9w_tvN5-au88fb2_2d41ve1saeUCw3dgjSqWgI68VqVZ1Xh8MKKukRW8ktprG6sADDK0ke5DaeAEVba_Ym63vKcUfK-XiHuKaljrSgdWd7LVtdVVdb6oJZ3JhGWNJ6OsZ6BiqGxpDre87UMYosFCBt4-Ai2P6VSZcc3a3X7881sKm9SnmnGh0pxSOmM4OhLvE5ba4XE3FXeJypjJyY3LVLhOlf9b-L_QbN-GX1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965286936</pqid></control><display><type>article</type><title>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</title><source>SpringerLink Journals</source><creator>Erdle, Hannes ; Böhlke, Thomas</creator><creatorcontrib>Erdle, Hannes ; Böhlke, Thomas</creatorcontrib><description>The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-017-1447-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Classical and Continuum Physics ; Computational Science and Engineering ; Computer simulation ; Corrosion prevention ; Crystals ; Deformation ; Dislocations ; Engineering ; Finite element method ; Grain boundaries ; Kinematics ; Mathematical analysis ; Mathematical models ; Original Paper ; Plastic properties ; Recrystallization ; Slip ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2017-12, Vol.60 (6), p.923-942</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</citedby><cites>FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-017-1447-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-017-1447-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Erdle, Hannes</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><title>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Corrosion prevention</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Grain boundaries</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Plastic properties</subject><subject>Recrystallization</subject><subject>Slip</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU2LFDEQhoMoOK7-AG8BTx56TaXTSec4LH4sLAh-nENNuro3S09nTNLo_HsztIJ7kBwSKu9TVS8vY69BXIMQ5l0WQmndCDANKGUa84TtQLWyEVaqp2xXP_rGaNM9Zy9yfhACur7tdizs-ZRwCLQU7tM5F5z5acZcgg_lzMs9xXTmY0x8xjQRH6i-j1hCXDL_Gco9Rz6E7ONSwrLGNXP0fj2uMxYa_nbieQ6nl-zZiHOmV3_uK_b9w_tvN5-au88fb2_2d41ve1saeUCw3dgjSqWgI68VqVZ1Xh8MKKukRW8ktprG6sADDK0ke5DaeAEVba_Ym63vKcUfK-XiHuKaljrSgdWd7LVtdVVdb6oJZ3JhGWNJ6OsZ6BiqGxpDre87UMYosFCBt4-Ai2P6VSZcc3a3X7881sKm9SnmnGh0pxSOmM4OhLvE5ba4XE3FXeJypjJyY3LVLhOlf9b-L_QbN-GX1Q</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Erdle, Hannes</creator><creator>Böhlke, Thomas</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20171201</creationdate><title>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</title><author>Erdle, Hannes ; Böhlke, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2ba195f8aa24415ec64e4345c6b7149429ac72a36ef583c11d32e9b267c01a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Corrosion prevention</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Grain boundaries</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Plastic properties</topic><topic>Recrystallization</topic><topic>Slip</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdle, Hannes</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdle, Hannes</au><au>Böhlke, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>60</volume><issue>6</issue><spage>923</spage><epage>942</epage><pages>923-942</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-017-1447-7</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2017-12, Vol.60 (6), p.923-942 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_1965286936 |
source | SpringerLink Journals |
subjects | Analysis Classical and Continuum Physics Computational Science and Engineering Computer simulation Corrosion prevention Crystals Deformation Dislocations Engineering Finite element method Grain boundaries Kinematics Mathematical analysis Mathematical models Original Paper Plastic properties Recrystallization Slip Theoretical and Applied Mechanics |
title | A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gradient%20crystal%20plasticity%20theory%20for%20large%20deformations%20with%20a%20discontinuous%20accumulated%20plastic%20slip&rft.jtitle=Computational%20mechanics&rft.au=Erdle,%20Hannes&rft.date=2017-12-01&rft.volume=60&rft.issue=6&rft.spage=923&rft.epage=942&rft.pages=923-942&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-017-1447-7&rft_dat=%3Cgale_proqu%3EA514774191%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965286936&rft_id=info:pmid/&rft_galeid=A514774191&rfr_iscdi=true |