Counting rooted 4-regular unicursal planar maps

A map is 4-regular unicursal if all its vertices are 4-valent except two odd-valent vertices. This paper investigates the number of rooted 4-regular unicursal planar maps and presents some formulae for such maps with four parameters: the number of edges, the number of inner faces and the valencies o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2017-10, Vol.33 (4), p.909-918
Hauptverfasser: Long, Shu-de, Cai, Jun-liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 918
container_issue 4
container_start_page 909
container_title Acta Mathematicae Applicatae Sinica
container_volume 33
creator Long, Shu-de
Cai, Jun-liang
description A map is 4-regular unicursal if all its vertices are 4-valent except two odd-valent vertices. This paper investigates the number of rooted 4-regular unicursal planar maps and presents some formulae for such maps with four parameters: the number of edges, the number of inner faces and the valencies of the two odd vertices.
doi_str_mv 10.1007/s10255-017-0706-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965285888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965285888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a0bb091bf2989a4d5f302e05758fba9fa1c11d74a2534763bc4985cbcf2b4e9d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC59hMsvk6SlErFLzoOSTZpLRsd9dkF-q_N2U9ePE0MDzPO8yL0D2QRyBErjIQyjkmIDGRRODTBVqAAIWZZvQSLQgIhbWQ7Brd5HwgBWRCLtBq3U_duO92Ver7MTRVjVPYTa1N1dTt_ZSybauhtV1ZHO2Qb9FVtG0Od79ziT5fnj_WG7x9f31bP22xZyBGbIlzRIOLVCtt64ZHRmggXHIVndXRggdoZG0pZ7UUzPlaK-6dj9TVQTdsiR7m3CH1X1PIozn0U-rKSQNacKq4UqpQMFM-9TmnEM2Q9kebvg0Qc-7FzL2Y8q4592JOxaGzkwvb7UL6k_yv9AMJG2U1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965285888</pqid></control><display><type>article</type><title>Counting rooted 4-regular unicursal planar maps</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Long, Shu-de ; Cai, Jun-liang</creator><creatorcontrib>Long, Shu-de ; Cai, Jun-liang</creatorcontrib><description>A map is 4-regular unicursal if all its vertices are 4-valent except two odd-valent vertices. This paper investigates the number of rooted 4-regular unicursal planar maps and presents some formulae for such maps with four parameters: the number of edges, the number of inner faces and the valencies of the two odd vertices.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-017-0706-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2017-10, Vol.33 (4), p.909-918</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a0bb091bf2989a4d5f302e05758fba9fa1c11d74a2534763bc4985cbcf2b4e9d3</citedby><cites>FETCH-LOGICAL-c316t-a0bb091bf2989a4d5f302e05758fba9fa1c11d74a2534763bc4985cbcf2b4e9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-017-0706-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-017-0706-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Long, Shu-de</creatorcontrib><creatorcontrib>Cai, Jun-liang</creatorcontrib><title>Counting rooted 4-regular unicursal planar maps</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><description>A map is 4-regular unicursal if all its vertices are 4-valent except two odd-valent vertices. This paper investigates the number of rooted 4-regular unicursal planar maps and presents some formulae for such maps with four parameters: the number of edges, the number of inner faces and the valencies of the two odd vertices.</description><subject>Applications of Mathematics</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC59hMsvk6SlErFLzoOSTZpLRsd9dkF-q_N2U9ePE0MDzPO8yL0D2QRyBErjIQyjkmIDGRRODTBVqAAIWZZvQSLQgIhbWQ7Brd5HwgBWRCLtBq3U_duO92Ver7MTRVjVPYTa1N1dTt_ZSybauhtV1ZHO2Qb9FVtG0Od79ziT5fnj_WG7x9f31bP22xZyBGbIlzRIOLVCtt64ZHRmggXHIVndXRggdoZG0pZ7UUzPlaK-6dj9TVQTdsiR7m3CH1X1PIozn0U-rKSQNacKq4UqpQMFM-9TmnEM2Q9kebvg0Qc-7FzL2Y8q4592JOxaGzkwvb7UL6k_yv9AMJG2U1</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Long, Shu-de</creator><creator>Cai, Jun-liang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171001</creationdate><title>Counting rooted 4-regular unicursal planar maps</title><author>Long, Shu-de ; Cai, Jun-liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a0bb091bf2989a4d5f302e05758fba9fa1c11d74a2534763bc4985cbcf2b4e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Shu-de</creatorcontrib><creatorcontrib>Cai, Jun-liang</creatorcontrib><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Shu-de</au><au>Cai, Jun-liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counting rooted 4-regular unicursal planar maps</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>33</volume><issue>4</issue><spage>909</spage><epage>918</epage><pages>909-918</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>A map is 4-regular unicursal if all its vertices are 4-valent except two odd-valent vertices. This paper investigates the number of rooted 4-regular unicursal planar maps and presents some formulae for such maps with four parameters: the number of edges, the number of inner faces and the valencies of the two odd vertices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-017-0706-x</doi><tpages>10</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2017-10, Vol.33 (4), p.909-918
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_1965285888
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title Counting rooted 4-regular unicursal planar maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counting%20rooted%204-regular%20unicursal%20planar%20maps&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Long,%20Shu-de&rft.date=2017-10-01&rft.volume=33&rft.issue=4&rft.spage=909&rft.epage=918&rft.pages=909-918&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-017-0706-x&rft_dat=%3Cproquest_cross%3E1965285888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965285888&rft_id=info:pmid/&rfr_iscdi=true