Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides
Summary The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2005-10, Vol.58 (1), p.244-256 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 1 |
container_start_page | 244 |
container_title | Molecular microbiology |
container_volume | 58 |
creator | Yoshida, Yasuo Ganguly, Soumya Bush, C. Allen Cisar, John O. |
description | Summary
The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function. |
doi_str_mv | 10.1111/j.1365-2958.2005.04820.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_196516217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912272321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</originalsourceid><addsrcrecordid>eNqNkM9uEzEQhy0EoqHwCshC4rjLeP1n7QMHFEGp1IoLSNyside7cZSsg71RmxuPwDP2SfA2Eb3iiy3N95vxfIRQBjUr58OmZlzJqjFS1w2ArEHoBur7Z2Txr_CcLMBIqLhufl6QVzlvABgHxV-SC6aYElI1C7JbYlrF9bFLOHnqxyGM3qcwDjT2dFp7mryLwximEEe6i1PoMw0jzVPy-ym66BxuqYsPv__gMCQ_4CNYQnM50X3cHjM6t8YUOp9fkxc9brN_c74vyY8vn78vv1Y3366ul59uKicFQCVaB9hjK4zugIMTGhXysphZtbLpjBSGGe0cU-i85txgL8regJ3TXSM8vyTvTn33Kf46-DzZTTyksYy0zCjJVMPaAukT5FLMOfne7lPYYTpaBnbWbDd2tmlnm3bWbB812_sSfXvuf1jtfPcUPHstwPszgLkY6hOOLuQnrmUCWq4L9_HE3YWtP_73B-zt7fX84n8BBD6bKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196516217</pqid></control><display><type>article</type><title>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Yoshida, Yasuo ; Ganguly, Soumya ; Bush, C. Allen ; Cisar, John O.</creator><creatorcontrib>Yoshida, Yasuo ; Ganguly, Soumya ; Bush, C. Allen ; Cisar, John O.</creatorcontrib><description>Summary
The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2005.04820.x</identifier><identifier>PMID: 16164562</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Amino Acid Motifs ; Bacterial Adhesion - genetics ; Bacteriology ; Biological and medical sciences ; Carbohydrate Sequence ; Carbohydrates ; Cell Wall - chemistry ; DNA, Bacterial ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Genes, Bacterial ; Genetic Engineering ; Glycosyltransferases - genetics ; Magnetic Resonance Spectroscopy ; Microbiology ; Miscellaneous ; Molecular biology ; Molecular Sequence Data ; Mutagenesis, Insertional ; Polysaccharides, Bacterial - chemistry ; Polysaccharides, Bacterial - metabolism ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Recombination, Genetic ; Sequence Analysis, DNA ; Streptococcus - genetics ; Streptococcus - metabolism</subject><ispartof>Molecular microbiology, 2005-10, Vol.58 (1), p.244-256</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Oct 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</citedby><cites>FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2005.04820.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2005.04820.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17140738$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16164562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Yasuo</creatorcontrib><creatorcontrib>Ganguly, Soumya</creatorcontrib><creatorcontrib>Bush, C. Allen</creatorcontrib><creatorcontrib>Cisar, John O.</creatorcontrib><title>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.</description><subject>Amino Acid Motifs</subject><subject>Bacterial Adhesion - genetics</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Carbohydrate Sequence</subject><subject>Carbohydrates</subject><subject>Cell Wall - chemistry</subject><subject>DNA, Bacterial</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Genes, Bacterial</subject><subject>Genetic Engineering</subject><subject>Glycosyltransferases - genetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional</subject><subject>Polysaccharides, Bacterial - chemistry</subject><subject>Polysaccharides, Bacterial - metabolism</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Recombination, Genetic</subject><subject>Sequence Analysis, DNA</subject><subject>Streptococcus - genetics</subject><subject>Streptococcus - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM9uEzEQhy0EoqHwCshC4rjLeP1n7QMHFEGp1IoLSNyside7cZSsg71RmxuPwDP2SfA2Eb3iiy3N95vxfIRQBjUr58OmZlzJqjFS1w2ArEHoBur7Z2Txr_CcLMBIqLhufl6QVzlvABgHxV-SC6aYElI1C7JbYlrF9bFLOHnqxyGM3qcwDjT2dFp7mryLwximEEe6i1PoMw0jzVPy-ym66BxuqYsPv__gMCQ_4CNYQnM50X3cHjM6t8YUOp9fkxc9brN_c74vyY8vn78vv1Y3366ul59uKicFQCVaB9hjK4zugIMTGhXysphZtbLpjBSGGe0cU-i85txgL8regJ3TXSM8vyTvTn33Kf46-DzZTTyksYy0zCjJVMPaAukT5FLMOfne7lPYYTpaBnbWbDd2tmlnm3bWbB812_sSfXvuf1jtfPcUPHstwPszgLkY6hOOLuQnrmUCWq4L9_HE3YWtP_73B-zt7fX84n8BBD6bKg</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Yoshida, Yasuo</creator><creator>Ganguly, Soumya</creator><creator>Bush, C. Allen</creator><creator>Cisar, John O.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200510</creationdate><title>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</title><author>Yoshida, Yasuo ; Ganguly, Soumya ; Bush, C. Allen ; Cisar, John O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Motifs</topic><topic>Bacterial Adhesion - genetics</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Carbohydrate Sequence</topic><topic>Carbohydrates</topic><topic>Cell Wall - chemistry</topic><topic>DNA, Bacterial</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Genes, Bacterial</topic><topic>Genetic Engineering</topic><topic>Glycosyltransferases - genetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional</topic><topic>Polysaccharides, Bacterial - chemistry</topic><topic>Polysaccharides, Bacterial - metabolism</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Recombination, Genetic</topic><topic>Sequence Analysis, DNA</topic><topic>Streptococcus - genetics</topic><topic>Streptococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Yasuo</creatorcontrib><creatorcontrib>Ganguly, Soumya</creatorcontrib><creatorcontrib>Bush, C. Allen</creatorcontrib><creatorcontrib>Cisar, John O.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Yasuo</au><au>Ganguly, Soumya</au><au>Bush, C. Allen</au><au>Cisar, John O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2005-10</date><risdate>2005</risdate><volume>58</volume><issue>1</issue><spage>244</spage><epage>256</epage><pages>244-256</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16164562</pmid><doi>10.1111/j.1365-2958.2005.04820.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2005-10, Vol.58 (1), p.244-256 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_journals_196516217 |
source | MEDLINE; Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Motifs Bacterial Adhesion - genetics Bacteriology Biological and medical sciences Carbohydrate Sequence Carbohydrates Cell Wall - chemistry DNA, Bacterial Fundamental and applied biological sciences. Psychology Gene Deletion Genes, Bacterial Genetic Engineering Glycosyltransferases - genetics Magnetic Resonance Spectroscopy Microbiology Miscellaneous Molecular biology Molecular Sequence Data Mutagenesis, Insertional Polysaccharides, Bacterial - chemistry Polysaccharides, Bacterial - metabolism Receptors, Cell Surface - chemistry Receptors, Cell Surface - genetics Recombination, Genetic Sequence Analysis, DNA Streptococcus - genetics Streptococcus - metabolism |
title | Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbohydrate%20engineering%20of%20the%20recognition%20motifs%20in%20streptococcal%20co%E2%80%90aggregation%20receptor%20polysaccharides&rft.jtitle=Molecular%20microbiology&rft.au=Yoshida,%20Yasuo&rft.date=2005-10&rft.volume=58&rft.issue=1&rft.spage=244&rft.epage=256&rft.pages=244-256&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2005.04820.x&rft_dat=%3Cproquest_cross%3E912272321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196516217&rft_id=info:pmid/16164562&rfr_iscdi=true |