Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides

Summary The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2005-10, Vol.58 (1), p.244-256
Hauptverfasser: Yoshida, Yasuo, Ganguly, Soumya, Bush, C. Allen, Cisar, John O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 1
container_start_page 244
container_title Molecular microbiology
container_volume 58
creator Yoshida, Yasuo
Ganguly, Soumya
Bush, C. Allen
Cisar, John O.
description Summary The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.
doi_str_mv 10.1111/j.1365-2958.2005.04820.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_196516217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912272321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</originalsourceid><addsrcrecordid>eNqNkM9uEzEQhy0EoqHwCshC4rjLeP1n7QMHFEGp1IoLSNyside7cZSsg71RmxuPwDP2SfA2Eb3iiy3N95vxfIRQBjUr58OmZlzJqjFS1w2ArEHoBur7Z2Txr_CcLMBIqLhufl6QVzlvABgHxV-SC6aYElI1C7JbYlrF9bFLOHnqxyGM3qcwDjT2dFp7mryLwximEEe6i1PoMw0jzVPy-ym66BxuqYsPv__gMCQ_4CNYQnM50X3cHjM6t8YUOp9fkxc9brN_c74vyY8vn78vv1Y3366ul59uKicFQCVaB9hjK4zugIMTGhXysphZtbLpjBSGGe0cU-i85txgL8regJ3TXSM8vyTvTn33Kf46-DzZTTyksYy0zCjJVMPaAukT5FLMOfne7lPYYTpaBnbWbDd2tmlnm3bWbB812_sSfXvuf1jtfPcUPHstwPszgLkY6hOOLuQnrmUCWq4L9_HE3YWtP_73B-zt7fX84n8BBD6bKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196516217</pqid></control><display><type>article</type><title>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Yoshida, Yasuo ; Ganguly, Soumya ; Bush, C. Allen ; Cisar, John O.</creator><creatorcontrib>Yoshida, Yasuo ; Ganguly, Soumya ; Bush, C. Allen ; Cisar, John O.</creatorcontrib><description>Summary The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2005.04820.x</identifier><identifier>PMID: 16164562</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Amino Acid Motifs ; Bacterial Adhesion - genetics ; Bacteriology ; Biological and medical sciences ; Carbohydrate Sequence ; Carbohydrates ; Cell Wall - chemistry ; DNA, Bacterial ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Genes, Bacterial ; Genetic Engineering ; Glycosyltransferases - genetics ; Magnetic Resonance Spectroscopy ; Microbiology ; Miscellaneous ; Molecular biology ; Molecular Sequence Data ; Mutagenesis, Insertional ; Polysaccharides, Bacterial - chemistry ; Polysaccharides, Bacterial - metabolism ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Recombination, Genetic ; Sequence Analysis, DNA ; Streptococcus - genetics ; Streptococcus - metabolism</subject><ispartof>Molecular microbiology, 2005-10, Vol.58 (1), p.244-256</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Oct 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</citedby><cites>FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2005.04820.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2005.04820.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17140738$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16164562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Yasuo</creatorcontrib><creatorcontrib>Ganguly, Soumya</creatorcontrib><creatorcontrib>Bush, C. Allen</creatorcontrib><creatorcontrib>Cisar, John O.</creatorcontrib><title>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.</description><subject>Amino Acid Motifs</subject><subject>Bacterial Adhesion - genetics</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Carbohydrate Sequence</subject><subject>Carbohydrates</subject><subject>Cell Wall - chemistry</subject><subject>DNA, Bacterial</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Genes, Bacterial</subject><subject>Genetic Engineering</subject><subject>Glycosyltransferases - genetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional</subject><subject>Polysaccharides, Bacterial - chemistry</subject><subject>Polysaccharides, Bacterial - metabolism</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Recombination, Genetic</subject><subject>Sequence Analysis, DNA</subject><subject>Streptococcus - genetics</subject><subject>Streptococcus - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM9uEzEQhy0EoqHwCshC4rjLeP1n7QMHFEGp1IoLSNyside7cZSsg71RmxuPwDP2SfA2Eb3iiy3N95vxfIRQBjUr58OmZlzJqjFS1w2ArEHoBur7Z2Txr_CcLMBIqLhufl6QVzlvABgHxV-SC6aYElI1C7JbYlrF9bFLOHnqxyGM3qcwDjT2dFp7mryLwximEEe6i1PoMw0jzVPy-ym66BxuqYsPv__gMCQ_4CNYQnM50X3cHjM6t8YUOp9fkxc9brN_c74vyY8vn78vv1Y3366ul59uKicFQCVaB9hjK4zugIMTGhXysphZtbLpjBSGGe0cU-i85txgL8regJ3TXSM8vyTvTn33Kf46-DzZTTyksYy0zCjJVMPaAukT5FLMOfne7lPYYTpaBnbWbDd2tmlnm3bWbB812_sSfXvuf1jtfPcUPHstwPszgLkY6hOOLuQnrmUCWq4L9_HE3YWtP_73B-zt7fX84n8BBD6bKg</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Yoshida, Yasuo</creator><creator>Ganguly, Soumya</creator><creator>Bush, C. Allen</creator><creator>Cisar, John O.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200510</creationdate><title>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</title><author>Yoshida, Yasuo ; Ganguly, Soumya ; Bush, C. Allen ; Cisar, John O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5400-47c0afa7498d030c48a6a33659b752d9549198cc16ace8339af41360adc8d24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Motifs</topic><topic>Bacterial Adhesion - genetics</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Carbohydrate Sequence</topic><topic>Carbohydrates</topic><topic>Cell Wall - chemistry</topic><topic>DNA, Bacterial</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Genes, Bacterial</topic><topic>Genetic Engineering</topic><topic>Glycosyltransferases - genetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional</topic><topic>Polysaccharides, Bacterial - chemistry</topic><topic>Polysaccharides, Bacterial - metabolism</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Recombination, Genetic</topic><topic>Sequence Analysis, DNA</topic><topic>Streptococcus - genetics</topic><topic>Streptococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Yasuo</creatorcontrib><creatorcontrib>Ganguly, Soumya</creatorcontrib><creatorcontrib>Bush, C. Allen</creatorcontrib><creatorcontrib>Cisar, John O.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Yasuo</au><au>Ganguly, Soumya</au><au>Bush, C. Allen</au><au>Cisar, John O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2005-10</date><risdate>2005</risdate><volume>58</volume><issue>1</issue><spage>244</spage><epage>256</epage><pages>244-256</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin‐like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host‐like motif, either GalNAcβ1‐3Gal (Gn) or Galβ1‐3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host‐like motifs. In the current investigation, the genes for the glycosyltransferases that synthesize these motifs were identified by high‐resolution nuclear magnetic resonance (NMR) analysis of genetically altered polysaccharides. RPS production was switched from type 2Gn to 2G by replacing wefC and wefD in the type 2Gn gene cluster of S. gordonii 38 with wefF and wefG from the type 2G cluster of S. oralis J22. Disruption of either wefC or wefF abolished cell surface RPS production. In contrast, disruption of wefD in the type 2Gn cluster or wefG in the type 2G cluster eliminated β‐GalNAc from the Gn motif or β‐Gal from the G motif, resulting in mutant polysaccharides with hexa‐ rather than heptasaccharide subunits. The mutant polysaccharides reacted like wild‐type RPS with rabbit antibodies against type 2Gn or 2G RPS but were inactive as co‐aggregation receptors. Additional mutant polysaccharides with GalNAcβ1‐3GalNAc or Galβ1‐3Gal recognition motifs were engineered by replacing wefC in the type 2Gn cluster with wefF or wefF in the type 2G cluster with wefC respectively. The reactions of these genetically modified polysaccharides as antigens and receptors provide further insight into the structural basis of RPS function.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16164562</pmid><doi>10.1111/j.1365-2958.2005.04820.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2005-10, Vol.58 (1), p.244-256
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_journals_196516217
source MEDLINE; Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Free Full-Text Journals in Chemistry
subjects Amino Acid Motifs
Bacterial Adhesion - genetics
Bacteriology
Biological and medical sciences
Carbohydrate Sequence
Carbohydrates
Cell Wall - chemistry
DNA, Bacterial
Fundamental and applied biological sciences. Psychology
Gene Deletion
Genes, Bacterial
Genetic Engineering
Glycosyltransferases - genetics
Magnetic Resonance Spectroscopy
Microbiology
Miscellaneous
Molecular biology
Molecular Sequence Data
Mutagenesis, Insertional
Polysaccharides, Bacterial - chemistry
Polysaccharides, Bacterial - metabolism
Receptors, Cell Surface - chemistry
Receptors, Cell Surface - genetics
Recombination, Genetic
Sequence Analysis, DNA
Streptococcus - genetics
Streptococcus - metabolism
title Carbohydrate engineering of the recognition motifs in streptococcal co‐aggregation receptor polysaccharides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbohydrate%20engineering%20of%20the%20recognition%20motifs%20in%20streptococcal%20co%E2%80%90aggregation%20receptor%20polysaccharides&rft.jtitle=Molecular%20microbiology&rft.au=Yoshida,%20Yasuo&rft.date=2005-10&rft.volume=58&rft.issue=1&rft.spage=244&rft.epage=256&rft.pages=244-256&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2005.04820.x&rft_dat=%3Cproquest_cross%3E912272321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196516217&rft_id=info:pmid/16164562&rfr_iscdi=true