Topology optimization of multiphase architected materials for energy dissipation
In this article, we study the computational design of multiphase architected materials comprising a stiff phase, a dissipative phase, and void space, with enhanced vibration damping characteristics under wave propagation. We develop a topology optimization framework that maximizes a figure of merit...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2017-10, Vol.325, p.314-329 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | |
container_start_page | 314 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 325 |
creator | Asadpoure, Alireza Tootkaboni, Mazdak Valdevit, Lorenzo |
description | In this article, we study the computational design of multiphase architected materials comprising a stiff phase, a dissipative phase, and void space, with enhanced vibration damping characteristics under wave propagation. We develop a topology optimization framework that maximizes a figure of merit comprising of effective stiffness, density and effective damping. We also propose novel material interpolation strategies to avoid the blending of different phases at any given point in the design domain. This is achieved by carefully defining different penalization schemes for different components of the merit function. The effective stiffness of the periodic multiphase material is calculated using homogenization theory and the Bloch–Floquet theorem is used to obtain its damping capacity, allowing for the investigation of the effect of wave directionality, material microarchitecture and intrinsic material properties on the wave attenuation characteristics. It is shown that the proposed topology optimization framework allows for systematic tailoring of microstructure of the multiphase materials for wide ranges of frequencies and densities and results in the identification of optimized multiphase cellular designs with void space that are superior to fully dense topologies.
•Topology optimization of multiphase architected materials for energy dissipation.•Novel strategies for the interpolation of material properties in topology optimization.•Efficient tools for estimating damping capacity and stiffness of multiphase materials.•Multiphase cellular materials topologies for single and multiple target frequencies.•Superior hybrid cellular topologies with high stiffness and damping and low density. |
doi_str_mv | 10.1016/j.cma.2017.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965113657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782516313652</els_id><sourcerecordid>1965113657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b7a00f3a71f3b62f0f61e914d1e86756cff6b2888fada2d30b17b109bcf72b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Fz60z7TZJ8SSL_2BBwb2HNE3clG1Tk6ywfnqzrmeHB3OY95sZHiHXCAUC0tu-UIMsSkBWQBKwEzJDzpq8xIqfkhnAos4ZL-tzchFCD6k4ljPytnaT27qPfeamaAf7LaN1Y-ZMNuy20U4bGXQmvdrYqFXUXTbIqL2V25AZ5zM9ap_YzoZgp1_0kpyZNNVXf31O3h8f1svnfPX69LK8X-WqojzmLZMAppIMTdXS0oChqBtcdKg5ZTVVxtC25Jwb2cmyq6BF1iI0rTKsbKs5uTlunbz73OkQRe92fkwHBTa0RqxozZILjy7lXQheGzF5O0i_FwjiEJvoRYpNHGITkAQH5u7I6PT8l9VeBGX1qHRnfUpAdM7-Q_8AFqN3Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965113657</pqid></control><display><type>article</type><title>Topology optimization of multiphase architected materials for energy dissipation</title><source>Elsevier ScienceDirect Journals</source><creator>Asadpoure, Alireza ; Tootkaboni, Mazdak ; Valdevit, Lorenzo</creator><creatorcontrib>Asadpoure, Alireza ; Tootkaboni, Mazdak ; Valdevit, Lorenzo</creatorcontrib><description>In this article, we study the computational design of multiphase architected materials comprising a stiff phase, a dissipative phase, and void space, with enhanced vibration damping characteristics under wave propagation. We develop a topology optimization framework that maximizes a figure of merit comprising of effective stiffness, density and effective damping. We also propose novel material interpolation strategies to avoid the blending of different phases at any given point in the design domain. This is achieved by carefully defining different penalization schemes for different components of the merit function. The effective stiffness of the periodic multiphase material is calculated using homogenization theory and the Bloch–Floquet theorem is used to obtain its damping capacity, allowing for the investigation of the effect of wave directionality, material microarchitecture and intrinsic material properties on the wave attenuation characteristics. It is shown that the proposed topology optimization framework allows for systematic tailoring of microstructure of the multiphase materials for wide ranges of frequencies and densities and results in the identification of optimized multiphase cellular designs with void space that are superior to fully dense topologies.
•Topology optimization of multiphase architected materials for energy dissipation.•Novel strategies for the interpolation of material properties in topology optimization.•Efficient tools for estimating damping capacity and stiffness of multiphase materials.•Multiphase cellular materials topologies for single and multiple target frequencies.•Superior hybrid cellular topologies with high stiffness and damping and low density.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2017.07.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Architected materials ; Bloch–Floquet theorem ; Computer architecture ; Damping capacity ; Dissipative materials ; Energy dissipation ; Figure of merit ; Floquet theorem ; Homogenization ; Multiphase ; Multiphase cellular materials ; Optimal damping ; Optimization ; Stiffness ; Studies ; Topology ; Topology optimization ; Vibration damping ; Wave attenuation ; Wave propagation</subject><ispartof>Computer methods in applied mechanics and engineering, 2017-10, Vol.325, p.314-329</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b7a00f3a71f3b62f0f61e914d1e86756cff6b2888fada2d30b17b109bcf72b3</citedby><cites>FETCH-LOGICAL-c368t-b7a00f3a71f3b62f0f61e914d1e86756cff6b2888fada2d30b17b109bcf72b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782516313652$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Asadpoure, Alireza</creatorcontrib><creatorcontrib>Tootkaboni, Mazdak</creatorcontrib><creatorcontrib>Valdevit, Lorenzo</creatorcontrib><title>Topology optimization of multiphase architected materials for energy dissipation</title><title>Computer methods in applied mechanics and engineering</title><description>In this article, we study the computational design of multiphase architected materials comprising a stiff phase, a dissipative phase, and void space, with enhanced vibration damping characteristics under wave propagation. We develop a topology optimization framework that maximizes a figure of merit comprising of effective stiffness, density and effective damping. We also propose novel material interpolation strategies to avoid the blending of different phases at any given point in the design domain. This is achieved by carefully defining different penalization schemes for different components of the merit function. The effective stiffness of the periodic multiphase material is calculated using homogenization theory and the Bloch–Floquet theorem is used to obtain its damping capacity, allowing for the investigation of the effect of wave directionality, material microarchitecture and intrinsic material properties on the wave attenuation characteristics. It is shown that the proposed topology optimization framework allows for systematic tailoring of microstructure of the multiphase materials for wide ranges of frequencies and densities and results in the identification of optimized multiphase cellular designs with void space that are superior to fully dense topologies.
•Topology optimization of multiphase architected materials for energy dissipation.•Novel strategies for the interpolation of material properties in topology optimization.•Efficient tools for estimating damping capacity and stiffness of multiphase materials.•Multiphase cellular materials topologies for single and multiple target frequencies.•Superior hybrid cellular topologies with high stiffness and damping and low density.</description><subject>Architected materials</subject><subject>Bloch–Floquet theorem</subject><subject>Computer architecture</subject><subject>Damping capacity</subject><subject>Dissipative materials</subject><subject>Energy dissipation</subject><subject>Figure of merit</subject><subject>Floquet theorem</subject><subject>Homogenization</subject><subject>Multiphase</subject><subject>Multiphase cellular materials</subject><subject>Optimal damping</subject><subject>Optimization</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Topology</subject><subject>Topology optimization</subject><subject>Vibration damping</subject><subject>Wave attenuation</subject><subject>Wave propagation</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Fz60z7TZJ8SSL_2BBwb2HNE3clG1Tk6ywfnqzrmeHB3OY95sZHiHXCAUC0tu-UIMsSkBWQBKwEzJDzpq8xIqfkhnAos4ZL-tzchFCD6k4ljPytnaT27qPfeamaAf7LaN1Y-ZMNuy20U4bGXQmvdrYqFXUXTbIqL2V25AZ5zM9ap_YzoZgp1_0kpyZNNVXf31O3h8f1svnfPX69LK8X-WqojzmLZMAppIMTdXS0oChqBtcdKg5ZTVVxtC25Jwb2cmyq6BF1iI0rTKsbKs5uTlunbz73OkQRe92fkwHBTa0RqxozZILjy7lXQheGzF5O0i_FwjiEJvoRYpNHGITkAQH5u7I6PT8l9VeBGX1qHRnfUpAdM7-Q_8AFqN3Ag</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Asadpoure, Alireza</creator><creator>Tootkaboni, Mazdak</creator><creator>Valdevit, Lorenzo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171001</creationdate><title>Topology optimization of multiphase architected materials for energy dissipation</title><author>Asadpoure, Alireza ; Tootkaboni, Mazdak ; Valdevit, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b7a00f3a71f3b62f0f61e914d1e86756cff6b2888fada2d30b17b109bcf72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Architected materials</topic><topic>Bloch–Floquet theorem</topic><topic>Computer architecture</topic><topic>Damping capacity</topic><topic>Dissipative materials</topic><topic>Energy dissipation</topic><topic>Figure of merit</topic><topic>Floquet theorem</topic><topic>Homogenization</topic><topic>Multiphase</topic><topic>Multiphase cellular materials</topic><topic>Optimal damping</topic><topic>Optimization</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Topology</topic><topic>Topology optimization</topic><topic>Vibration damping</topic><topic>Wave attenuation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadpoure, Alireza</creatorcontrib><creatorcontrib>Tootkaboni, Mazdak</creatorcontrib><creatorcontrib>Valdevit, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asadpoure, Alireza</au><au>Tootkaboni, Mazdak</au><au>Valdevit, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of multiphase architected materials for energy dissipation</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>325</volume><spage>314</spage><epage>329</epage><pages>314-329</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this article, we study the computational design of multiphase architected materials comprising a stiff phase, a dissipative phase, and void space, with enhanced vibration damping characteristics under wave propagation. We develop a topology optimization framework that maximizes a figure of merit comprising of effective stiffness, density and effective damping. We also propose novel material interpolation strategies to avoid the blending of different phases at any given point in the design domain. This is achieved by carefully defining different penalization schemes for different components of the merit function. The effective stiffness of the periodic multiphase material is calculated using homogenization theory and the Bloch–Floquet theorem is used to obtain its damping capacity, allowing for the investigation of the effect of wave directionality, material microarchitecture and intrinsic material properties on the wave attenuation characteristics. It is shown that the proposed topology optimization framework allows for systematic tailoring of microstructure of the multiphase materials for wide ranges of frequencies and densities and results in the identification of optimized multiphase cellular designs with void space that are superior to fully dense topologies.
•Topology optimization of multiphase architected materials for energy dissipation.•Novel strategies for the interpolation of material properties in topology optimization.•Efficient tools for estimating damping capacity and stiffness of multiphase materials.•Multiphase cellular materials topologies for single and multiple target frequencies.•Superior hybrid cellular topologies with high stiffness and damping and low density.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2017.07.007</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2017-10, Vol.325, p.314-329 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_1965113657 |
source | Elsevier ScienceDirect Journals |
subjects | Architected materials Bloch–Floquet theorem Computer architecture Damping capacity Dissipative materials Energy dissipation Figure of merit Floquet theorem Homogenization Multiphase Multiphase cellular materials Optimal damping Optimization Stiffness Studies Topology Topology optimization Vibration damping Wave attenuation Wave propagation |
title | Topology optimization of multiphase architected materials for energy dissipation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20multiphase%20architected%20materials%20for%20energy%20dissipation&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Asadpoure,%20Alireza&rft.date=2017-10-01&rft.volume=325&rft.spage=314&rft.epage=329&rft.pages=314-329&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2017.07.007&rft_dat=%3Cproquest_cross%3E1965113657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965113657&rft_id=info:pmid/&rft_els_id=S0045782516313652&rfr_iscdi=true |