Compressed-sensing wavenumber-scanning interferometry

•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object. The Four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and laser technology 2018-01, Vol.98, p.229-233
Hauptverfasser: Bai, Yulei, Zhou, Yanzhou, He, Zhaoshui, Ye, Shuangli, Dong, Bo, Xie, Shengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue
container_start_page 229
container_title Optics and laser technology
container_volume 98
creator Bai, Yulei
Zhou, Yanzhou
He, Zhaoshui
Ye, Shuangli
Dong, Bo
Xie, Shengli
description •A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object. The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI.
doi_str_mv 10.1016/j.optlastec.2017.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965079979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399216309641</els_id><sourcerecordid>1965079979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-g4Lr1pM21-UweIMBN7oOaXoqKdO0JpmReXs7jLh1deDnv3A-Qm4plBSoeOjLccpbmzK6sgIqS1AlQH1GFlRJXVSc8XOymBUoaq2rS3KVUg8ATPB6Qfh6HKaIKWFbJAzJh8-7b7vHsBsajEVyNoSj5kPG2GEcB8zxcE0uOrtNePN7l-Tj6fF9_VJs3p5f16tN4WpW56JhthOus0J3CIKCAGSyBaskrxxKobUCi9ZSpEor7JpGONVy1oiqYaxt6yW5P_VOcfzaYcqmH3cxzJOGasFBai317JInl4tjShE7M0U_2HgwFMyRkenNHyNzZGRAmZnInFydkjg_sfcYTXIeg8PWR3TZtKP_t-MHePx1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965079979</pqid></control><display><type>article</type><title>Compressed-sensing wavenumber-scanning interferometry</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bai, Yulei ; Zhou, Yanzhou ; He, Zhaoshui ; Ye, Shuangli ; Dong, Bo ; Xie, Shengli</creator><creatorcontrib>Bai, Yulei ; Zhou, Yanzhou ; He, Zhaoshui ; Ye, Shuangli ; Dong, Bo ; Xie, Shengli</creatorcontrib><description>•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object. The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2017.08.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Compressed-sensing ; Eigenvalues ; Fourier transforms ; Fringe analysis ; Interference ; Interferometry ; Nonlinearity ; Scanning ; Sidelobes ; Studies ; Transform ; Wavelengths</subject><ispartof>Optics and laser technology, 2018-01, Vol.98, p.229-233</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</citedby><cites>FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlastec.2017.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Bai, Yulei</creatorcontrib><creatorcontrib>Zhou, Yanzhou</creatorcontrib><creatorcontrib>He, Zhaoshui</creatorcontrib><creatorcontrib>Ye, Shuangli</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><title>Compressed-sensing wavenumber-scanning interferometry</title><title>Optics and laser technology</title><description>•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object. The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI.</description><subject>Algorithms</subject><subject>Compressed-sensing</subject><subject>Eigenvalues</subject><subject>Fourier transforms</subject><subject>Fringe analysis</subject><subject>Interference</subject><subject>Interferometry</subject><subject>Nonlinearity</subject><subject>Scanning</subject><subject>Sidelobes</subject><subject>Studies</subject><subject>Transform</subject><subject>Wavelengths</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-g4Lr1pM21-UweIMBN7oOaXoqKdO0JpmReXs7jLh1deDnv3A-Qm4plBSoeOjLccpbmzK6sgIqS1AlQH1GFlRJXVSc8XOymBUoaq2rS3KVUg8ATPB6Qfh6HKaIKWFbJAzJh8-7b7vHsBsajEVyNoSj5kPG2GEcB8zxcE0uOrtNePN7l-Tj6fF9_VJs3p5f16tN4WpW56JhthOus0J3CIKCAGSyBaskrxxKobUCi9ZSpEor7JpGONVy1oiqYaxt6yW5P_VOcfzaYcqmH3cxzJOGasFBai317JInl4tjShE7M0U_2HgwFMyRkenNHyNzZGRAmZnInFydkjg_sfcYTXIeg8PWR3TZtKP_t-MHePx1nA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Bai, Yulei</creator><creator>Zhou, Yanzhou</creator><creator>He, Zhaoshui</creator><creator>Ye, Shuangli</creator><creator>Dong, Bo</creator><creator>Xie, Shengli</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Compressed-sensing wavenumber-scanning interferometry</title><author>Bai, Yulei ; Zhou, Yanzhou ; He, Zhaoshui ; Ye, Shuangli ; Dong, Bo ; Xie, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Compressed-sensing</topic><topic>Eigenvalues</topic><topic>Fourier transforms</topic><topic>Fringe analysis</topic><topic>Interference</topic><topic>Interferometry</topic><topic>Nonlinearity</topic><topic>Scanning</topic><topic>Sidelobes</topic><topic>Studies</topic><topic>Transform</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yulei</creatorcontrib><creatorcontrib>Zhou, Yanzhou</creatorcontrib><creatorcontrib>He, Zhaoshui</creatorcontrib><creatorcontrib>Ye, Shuangli</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yulei</au><au>Zhou, Yanzhou</au><au>He, Zhaoshui</au><au>Ye, Shuangli</au><au>Dong, Bo</au><au>Xie, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed-sensing wavenumber-scanning interferometry</atitle><jtitle>Optics and laser technology</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>98</volume><spage>229</spage><epage>233</epage><pages>229-233</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object. The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2017.08.003</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-3992
ispartof Optics and laser technology, 2018-01, Vol.98, p.229-233
issn 0030-3992
1879-2545
language eng
recordid cdi_proquest_journals_1965079979
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Compressed-sensing
Eigenvalues
Fourier transforms
Fringe analysis
Interference
Interferometry
Nonlinearity
Scanning
Sidelobes
Studies
Transform
Wavelengths
title Compressed-sensing wavenumber-scanning interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T05%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed-sensing%20wavenumber-scanning%20interferometry&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Bai,%20Yulei&rft.date=2018-01-01&rft.volume=98&rft.spage=229&rft.epage=233&rft.pages=229-233&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2017.08.003&rft_dat=%3Cproquest_cross%3E1965079979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965079979&rft_id=info:pmid/&rft_els_id=S0030399216309641&rfr_iscdi=true