Compressed-sensing wavenumber-scanning interferometry
•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object. The Four...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2018-01, Vol.98, p.229-233 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | |
container_start_page | 229 |
container_title | Optics and laser technology |
container_volume | 98 |
creator | Bai, Yulei Zhou, Yanzhou He, Zhaoshui Ye, Shuangli Dong, Bo Xie, Shengli |
description | •A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object.
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI. |
doi_str_mv | 10.1016/j.optlastec.2017.08.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965079979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399216309641</els_id><sourcerecordid>1965079979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-g4Lr1pM21-UweIMBN7oOaXoqKdO0JpmReXs7jLh1deDnv3A-Qm4plBSoeOjLccpbmzK6sgIqS1AlQH1GFlRJXVSc8XOymBUoaq2rS3KVUg8ATPB6Qfh6HKaIKWFbJAzJh8-7b7vHsBsajEVyNoSj5kPG2GEcB8zxcE0uOrtNePN7l-Tj6fF9_VJs3p5f16tN4WpW56JhthOus0J3CIKCAGSyBaskrxxKobUCi9ZSpEor7JpGONVy1oiqYaxt6yW5P_VOcfzaYcqmH3cxzJOGasFBai317JInl4tjShE7M0U_2HgwFMyRkenNHyNzZGRAmZnInFydkjg_sfcYTXIeg8PWR3TZtKP_t-MHePx1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965079979</pqid></control><display><type>article</type><title>Compressed-sensing wavenumber-scanning interferometry</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bai, Yulei ; Zhou, Yanzhou ; He, Zhaoshui ; Ye, Shuangli ; Dong, Bo ; Xie, Shengli</creator><creatorcontrib>Bai, Yulei ; Zhou, Yanzhou ; He, Zhaoshui ; Ye, Shuangli ; Dong, Bo ; Xie, Shengli</creatorcontrib><description>•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object.
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2017.08.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Compressed-sensing ; Eigenvalues ; Fourier transforms ; Fringe analysis ; Interference ; Interferometry ; Nonlinearity ; Scanning ; Sidelobes ; Studies ; Transform ; Wavelengths</subject><ispartof>Optics and laser technology, 2018-01, Vol.98, p.229-233</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</citedby><cites>FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlastec.2017.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Bai, Yulei</creatorcontrib><creatorcontrib>Zhou, Yanzhou</creatorcontrib><creatorcontrib>He, Zhaoshui</creatorcontrib><creatorcontrib>Ye, Shuangli</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><title>Compressed-sensing wavenumber-scanning interferometry</title><title>Optics and laser technology</title><description>•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object.
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI.</description><subject>Algorithms</subject><subject>Compressed-sensing</subject><subject>Eigenvalues</subject><subject>Fourier transforms</subject><subject>Fringe analysis</subject><subject>Interference</subject><subject>Interferometry</subject><subject>Nonlinearity</subject><subject>Scanning</subject><subject>Sidelobes</subject><subject>Studies</subject><subject>Transform</subject><subject>Wavelengths</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-g4Lr1pM21-UweIMBN7oOaXoqKdO0JpmReXs7jLh1deDnv3A-Qm4plBSoeOjLccpbmzK6sgIqS1AlQH1GFlRJXVSc8XOymBUoaq2rS3KVUg8ATPB6Qfh6HKaIKWFbJAzJh8-7b7vHsBsajEVyNoSj5kPG2GEcB8zxcE0uOrtNePN7l-Tj6fF9_VJs3p5f16tN4WpW56JhthOus0J3CIKCAGSyBaskrxxKobUCi9ZSpEor7JpGONVy1oiqYaxt6yW5P_VOcfzaYcqmH3cxzJOGasFBai317JInl4tjShE7M0U_2HgwFMyRkenNHyNzZGRAmZnInFydkjg_sfcYTXIeg8PWR3TZtKP_t-MHePx1nA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Bai, Yulei</creator><creator>Zhou, Yanzhou</creator><creator>He, Zhaoshui</creator><creator>Ye, Shuangli</creator><creator>Dong, Bo</creator><creator>Xie, Shengli</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Compressed-sensing wavenumber-scanning interferometry</title><author>Bai, Yulei ; Zhou, Yanzhou ; He, Zhaoshui ; Ye, Shuangli ; Dong, Bo ; Xie, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b4af6cfa69fe061060e47d0a8752ce769980aeaa1e1898efbb6c8d54b62b44dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Compressed-sensing</topic><topic>Eigenvalues</topic><topic>Fourier transforms</topic><topic>Fringe analysis</topic><topic>Interference</topic><topic>Interferometry</topic><topic>Nonlinearity</topic><topic>Scanning</topic><topic>Sidelobes</topic><topic>Studies</topic><topic>Transform</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yulei</creatorcontrib><creatorcontrib>Zhou, Yanzhou</creatorcontrib><creatorcontrib>He, Zhaoshui</creatorcontrib><creatorcontrib>Ye, Shuangli</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yulei</au><au>Zhou, Yanzhou</au><au>He, Zhaoshui</au><au>Ye, Shuangli</au><au>Dong, Bo</au><au>Xie, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed-sensing wavenumber-scanning interferometry</atitle><jtitle>Optics and laser technology</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>98</volume><spage>229</spage><epage>233</epage><pages>229-233</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>•A compressed sensing theory is proposed to evaluate DRWSI data.•The method performs well when laser's output scans nonlinearly and with mode-hop.•The method refines the depth resolution and phase measurement accuracy.•The method does not require prior knowledge of the measured object.
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FTas a standard algorithm for DRWSI.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2017.08.003</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3992 |
ispartof | Optics and laser technology, 2018-01, Vol.98, p.229-233 |
issn | 0030-3992 1879-2545 |
language | eng |
recordid | cdi_proquest_journals_1965079979 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Compressed-sensing Eigenvalues Fourier transforms Fringe analysis Interference Interferometry Nonlinearity Scanning Sidelobes Studies Transform Wavelengths |
title | Compressed-sensing wavenumber-scanning interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T05%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed-sensing%20wavenumber-scanning%20interferometry&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Bai,%20Yulei&rft.date=2018-01-01&rft.volume=98&rft.spage=229&rft.epage=233&rft.pages=229-233&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2017.08.003&rft_dat=%3Cproquest_cross%3E1965079979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965079979&rft_id=info:pmid/&rft_els_id=S0030399216309641&rfr_iscdi=true |