Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon
A new CaCl 2 -CaO-SiO 2 slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.3219-3227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3227 |
---|---|
container_issue | 6 |
container_start_page | 3219 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 48 |
creator | Chen, Hui Wang, Ye Zheng, Wenjia Li, Qincan Yuan, Xizhi Morita, Kazuki |
description | A new CaCl
2
-CaO-SiO
2
slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase
via
slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl
2
were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios (
L
B
) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon (
μ
). The evaporation rate of CaCl
2
was also measured by thermogravimetry analysis (TGA). |
doi_str_mv | 10.1007/s11663-017-1105-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965055087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965055087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-217bf6aa04947ffea3c2478fd648c588f4c2a2e7db7dbcc79a6f6a87547f755e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOZrZ3SS7R120FpSCa88hzSZlS3ZTk63Qt_FZfDJT6sGLMDBz-P5_4EPoGugtUCruIgDnOaEgCABlRJygCbAiJ1ABP003FTlhHNg5uohxQynlVZVPkHz1rXF43m-d6c0wqrHzA_YWP_jgh--vN9P7T-XwMnbDGteqdhmp1YI03SLDjVNr3OzjaHpsfcCNdyqQWVCtwU3nOu2HS3RmlYvm6ndP0fLp8b1-Ji-L2by-fyE6Z2wkGYiV5UrRoiqEtUblOitEaVtelJqVpS10pjIj2lUarUWleMJLwRItGDP5FN0ce7fBf-xMHOXG78KQXkqoOKOM0VIkCo6UDj7GYKzchq5XYS-ByoNHefQok0d58CgPmeyYiYkd1ib8af439AMiXHVi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965055087</pqid></control><display><type>article</type><title>Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Hui ; Wang, Ye ; Zheng, Wenjia ; Li, Qincan ; Yuan, Xizhi ; Morita, Kazuki</creator><creatorcontrib>Chen, Hui ; Wang, Ye ; Zheng, Wenjia ; Li, Qincan ; Yuan, Xizhi ; Morita, Kazuki</creatorcontrib><description>A new CaCl
2
-CaO-SiO
2
slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase
via
slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl
2
were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios (
L
B
) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon (
μ
). The evaporation rate of CaCl
2
was also measured by thermogravimetry analysis (TGA).</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-017-1105-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boron ; Boundary layer ; Calcium chloride ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry and Materials Science ; Computational fluid dynamics ; Evaporation rate ; Fluid flow ; Mass ratios ; Mass transfer ; Materials Science ; Metallic Materials ; Metallurgical analysis ; Nanotechnology ; Partial pressure ; Quality ; Silicon ; Silicon dioxide ; Structural Materials ; Surfaces and Interfaces ; Thermogravimetry ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.3219-3227</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2017</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-217bf6aa04947ffea3c2478fd648c588f4c2a2e7db7dbcc79a6f6a87547f755e3</citedby><cites>FETCH-LOGICAL-c355t-217bf6aa04947ffea3c2478fd648c588f4c2a2e7db7dbcc79a6f6a87547f755e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-017-1105-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-017-1105-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Zheng, Wenjia</creatorcontrib><creatorcontrib>Li, Qincan</creatorcontrib><creatorcontrib>Yuan, Xizhi</creatorcontrib><creatorcontrib>Morita, Kazuki</creatorcontrib><title>Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>A new CaCl
2
-CaO-SiO
2
slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase
via
slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl
2
were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios (
L
B
) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon (
μ
). The evaporation rate of CaCl
2
was also measured by thermogravimetry analysis (TGA).</description><subject>Boron</subject><subject>Boundary layer</subject><subject>Calcium chloride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Evaporation rate</subject><subject>Fluid flow</subject><subject>Mass ratios</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgical analysis</subject><subject>Nanotechnology</subject><subject>Partial pressure</subject><subject>Quality</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermogravimetry</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOZrZ3SS7R120FpSCa88hzSZlS3ZTk63Qt_FZfDJT6sGLMDBz-P5_4EPoGugtUCruIgDnOaEgCABlRJygCbAiJ1ABP003FTlhHNg5uohxQynlVZVPkHz1rXF43m-d6c0wqrHzA_YWP_jgh--vN9P7T-XwMnbDGteqdhmp1YI03SLDjVNr3OzjaHpsfcCNdyqQWVCtwU3nOu2HS3RmlYvm6ndP0fLp8b1-Ji-L2by-fyE6Z2wkGYiV5UrRoiqEtUblOitEaVtelJqVpS10pjIj2lUarUWleMJLwRItGDP5FN0ce7fBf-xMHOXG78KQXkqoOKOM0VIkCo6UDj7GYKzchq5XYS-ByoNHefQok0d58CgPmeyYiYkd1ib8af439AMiXHVi</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Chen, Hui</creator><creator>Wang, Ye</creator><creator>Zheng, Wenjia</creator><creator>Li, Qincan</creator><creator>Yuan, Xizhi</creator><creator>Morita, Kazuki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20171201</creationdate><title>Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon</title><author>Chen, Hui ; Wang, Ye ; Zheng, Wenjia ; Li, Qincan ; Yuan, Xizhi ; Morita, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-217bf6aa04947ffea3c2478fd648c588f4c2a2e7db7dbcc79a6f6a87547f755e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boron</topic><topic>Boundary layer</topic><topic>Calcium chloride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Evaporation rate</topic><topic>Fluid flow</topic><topic>Mass ratios</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgical analysis</topic><topic>Nanotechnology</topic><topic>Partial pressure</topic><topic>Quality</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermogravimetry</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Zheng, Wenjia</creatorcontrib><creatorcontrib>Li, Qincan</creatorcontrib><creatorcontrib>Yuan, Xizhi</creatorcontrib><creatorcontrib>Morita, Kazuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hui</au><au>Wang, Ye</au><au>Zheng, Wenjia</au><au>Li, Qincan</au><au>Yuan, Xizhi</au><au>Morita, Kazuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>48</volume><issue>6</issue><spage>3219</spage><epage>3227</epage><pages>3219-3227</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>A new CaCl
2
-CaO-SiO
2
slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase
via
slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl
2
were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios (
L
B
) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon (
μ
). The evaporation rate of CaCl
2
was also measured by thermogravimetry analysis (TGA).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-017-1105-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.3219-3227 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_journals_1965055087 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boron Boundary layer Calcium chloride Characterization and Evaluation of Materials Chemical reactions Chemistry and Materials Science Computational fluid dynamics Evaporation rate Fluid flow Mass ratios Mass transfer Materials Science Metallic Materials Metallurgical analysis Nanotechnology Partial pressure Quality Silicon Silicon dioxide Structural Materials Surfaces and Interfaces Thermogravimetry Thin Films |
title | Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Implementation%20of%20Boron%C2%A0Removal%20Using%20CaCl2-CaO-SiO2%20Slag%20System%20for%20Solar-Grade%20Silicon&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Chen,%20Hui&rft.date=2017-12-01&rft.volume=48&rft.issue=6&rft.spage=3219&rft.epage=3227&rft.pages=3219-3227&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-017-1105-7&rft_dat=%3Cproquest_cross%3E1965055087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965055087&rft_id=info:pmid/&rfr_iscdi=true |