Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3
In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat ba...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.3185-3195 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3195 |
---|---|
container_issue | 6 |
container_start_page | 3185 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 48 |
creator | Liu, Jingjing Fallah-Mehrjardi, Ata Shishin, Denis Jak, Evgueni Dorreen, Mark Taylor, Mark |
description | In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF
2
-AlF
3
-Al
2
O
3
electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath. |
doi_str_mv | 10.1007/s11663-017-1109-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965055083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965055083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8abf331e8c8ec8313a4a4de514398259d2e435484128180c07ac53da95914e9f3</originalsourceid><addsrcrecordid>eNp1kU1u2zAQhYUgBfLTHKA7Al2z4WhEmezOEerGQIos3K4JVh7ZDCTKIakA7l1611BxFt10M5whvvcG5CuKTyC-gBCL2whQ18gFLDiA0BzPikuQFXLQUJ_nXiyQyxrkRXEV45MQotYaL4u_a_9CMbmdTW70bOxY2hNb-66fyLc0X9yTTezO9naeN3vXpcgyOnOrQPSH2A_XhjGmMLVpCsSs37JmHA5jdG-mzrNlPw3OTwPbDNQn53fZMO3Z5hgTDV9ZE45j7xLxxq5KvuxXmEv5iB-LD53tI928n9fFr9W3n809f3j8vm6WD7xFqBNX9neHCKRaRa1CQFvZaksSKtSqlHpbUoWyUhWUCpRoxcK2ErdWSw0V6Q6vi88n30MYn6f8H-ZpnILPKw3oWgophcJMwYmaXxsDdeYQ3GDD0YAwcwrmlILJKZg5BTNrypMmZtbvKPzj_F_RK8Vxigc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965055083</pqid></control><display><type>article</type><title>Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3</title><source>SpringerNature Journals</source><creator>Liu, Jingjing ; Fallah-Mehrjardi, Ata ; Shishin, Denis ; Jak, Evgueni ; Dorreen, Mark ; Taylor, Mark</creator><creatorcontrib>Liu, Jingjing ; Fallah-Mehrjardi, Ata ; Shishin, Denis ; Jak, Evgueni ; Dorreen, Mark ; Taylor, Mark</creatorcontrib><description>In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF
2
-AlF
3
-Al
2
O
3
electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-017-1109-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Aluminum fluorides ; Aluminum oxide ; Calcium fluoride ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cryolite ; Crystal structure ; Crystallinity ; Electrolysis ; Heat balance ; Linings ; Mass transfer ; Materials Science ; Metallic Materials ; Microstructure ; Nanotechnology ; Smelting ; Steady state ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.3185-3195</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2017</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8abf331e8c8ec8313a4a4de514398259d2e435484128180c07ac53da95914e9f3</citedby><cites>FETCH-LOGICAL-c316t-8abf331e8c8ec8313a4a4de514398259d2e435484128180c07ac53da95914e9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-017-1109-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-017-1109-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Fallah-Mehrjardi, Ata</creatorcontrib><creatorcontrib>Shishin, Denis</creatorcontrib><creatorcontrib>Jak, Evgueni</creatorcontrib><creatorcontrib>Dorreen, Mark</creatorcontrib><creatorcontrib>Taylor, Mark</creatorcontrib><title>Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF
2
-AlF
3
-Al
2
O
3
electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.</description><subject>Aluminum</subject><subject>Aluminum fluorides</subject><subject>Aluminum oxide</subject><subject>Calcium fluoride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cryolite</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electrolysis</subject><subject>Heat balance</subject><subject>Linings</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Smelting</subject><subject>Steady state</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1u2zAQhYUgBfLTHKA7Al2z4WhEmezOEerGQIos3K4JVh7ZDCTKIakA7l1611BxFt10M5whvvcG5CuKTyC-gBCL2whQ18gFLDiA0BzPikuQFXLQUJ_nXiyQyxrkRXEV45MQotYaL4u_a_9CMbmdTW70bOxY2hNb-66fyLc0X9yTTezO9naeN3vXpcgyOnOrQPSH2A_XhjGmMLVpCsSs37JmHA5jdG-mzrNlPw3OTwPbDNQn53fZMO3Z5hgTDV9ZE45j7xLxxq5KvuxXmEv5iB-LD53tI928n9fFr9W3n809f3j8vm6WD7xFqBNX9neHCKRaRa1CQFvZaksSKtSqlHpbUoWyUhWUCpRoxcK2ErdWSw0V6Q6vi88n30MYn6f8H-ZpnILPKw3oWgophcJMwYmaXxsDdeYQ3GDD0YAwcwrmlILJKZg5BTNrypMmZtbvKPzj_F_RK8Vxigc</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Liu, Jingjing</creator><creator>Fallah-Mehrjardi, Ata</creator><creator>Shishin, Denis</creator><creator>Jak, Evgueni</creator><creator>Dorreen, Mark</creator><creator>Taylor, Mark</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20171201</creationdate><title>Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3</title><author>Liu, Jingjing ; Fallah-Mehrjardi, Ata ; Shishin, Denis ; Jak, Evgueni ; Dorreen, Mark ; Taylor, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8abf331e8c8ec8313a4a4de514398259d2e435484128180c07ac53da95914e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Aluminum fluorides</topic><topic>Aluminum oxide</topic><topic>Calcium fluoride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cryolite</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electrolysis</topic><topic>Heat balance</topic><topic>Linings</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Smelting</topic><topic>Steady state</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Fallah-Mehrjardi, Ata</creatorcontrib><creatorcontrib>Shishin, Denis</creatorcontrib><creatorcontrib>Jak, Evgueni</creatorcontrib><creatorcontrib>Dorreen, Mark</creatorcontrib><creatorcontrib>Taylor, Mark</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jingjing</au><au>Fallah-Mehrjardi, Ata</au><au>Shishin, Denis</au><au>Jak, Evgueni</au><au>Dorreen, Mark</au><au>Taylor, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>48</volume><issue>6</issue><spage>3185</spage><epage>3195</epage><pages>3185-3195</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF
2
-AlF
3
-Al
2
O
3
electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-017-1109-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.3185-3195 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_journals_1965055083 |
source | SpringerNature Journals |
subjects | Aluminum Aluminum fluorides Aluminum oxide Calcium fluoride Characterization and Evaluation of Materials Chemistry and Materials Science Cryolite Crystal structure Crystallinity Electrolysis Heat balance Linings Mass transfer Materials Science Metallic Materials Microstructure Nanotechnology Smelting Steady state Structural Materials Surfaces and Interfaces Thin Films |
title | Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Influence%20of%20Heat%20Balance%20Shifts%20on%20the%20Freeze%20Microstructure%20and%20Composition%20in%20Aluminum%20Smelting%20Bath%20System:%20Cryolite-CaF2-AlF3-Al2O3&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Liu,%20Jingjing&rft.date=2017-12-01&rft.volume=48&rft.issue=6&rft.spage=3185&rft.epage=3195&rft.pages=3185-3195&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-017-1109-3&rft_dat=%3Cproquest_cross%3E1965055083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965055083&rft_id=info:pmid/&rfr_iscdi=true |