A p‐adaptive method for electromagnetic wave propagation
Summary The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the s...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2017-12, Vol.112 (11), p.1687-1711 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1711 |
---|---|
container_issue | 11 |
container_start_page | 1687 |
container_title | International journal for numerical methods in engineering |
container_volume | 112 |
creator | Panourgias, Konstantinos T. Ekaterinaris, John A. |
description | Summary
The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated. |
doi_str_mv | 10.1002/nme.5577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1964916180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964916180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUg8QmRWFhS_Ow4ttmqqgWkAgvMlps8l1RNHJyUqhufwDfyJbiUlekN99x3pUPIJdARUMpumhpHQkh5RAZAtUwpo_KYDGKkU6EVnJKzrltRCiAoH5DbcdJ-f37Z0rZ99YFJjf2bLxPnQ4JrLPrga7tssK-KZGtj3gbf2qXtK9-ckxNn1x1e_N0heZ1NXyb36fz57mEynqcF01ymSvIMmLBZJh2VTjChUQPlZYaMCeegzBeyxIUoCqmE5FJp4LlTAFaVscqH5OrwN26_b7DrzcpvQhMnDeg805CDopG6PlBF8F0X0Jk2VLUNOwPU7M2YaMbszUQ0PaDbao27fznz9Dj95X8AnuxjhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964916180</pqid></control><display><type>article</type><title>A p‐adaptive method for electromagnetic wave propagation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Panourgias, Konstantinos T. ; Ekaterinaris, John A.</creator><creatorcontrib>Panourgias, Konstantinos T. ; Ekaterinaris, John A.</creatorcontrib><description>Summary
The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5577</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>discontinuous Galerkin method ; Divergence ; Finite element method ; Formulations ; Galerkin method ; Magnetic fields ; Mathematical analysis ; Maxwell equations ; Maxwell's equations ; Propagation ; Time marching ; Wave propagation</subject><ispartof>International journal for numerical methods in engineering, 2017-12, Vol.112 (11), p.1687-1711</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</citedby><cites>FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</cites><orcidid>0000-0001-5392-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5577$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5577$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Panourgias, Konstantinos T.</creatorcontrib><creatorcontrib>Ekaterinaris, John A.</creatorcontrib><title>A p‐adaptive method for electromagnetic wave propagation</title><title>International journal for numerical methods in engineering</title><description>Summary
The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.</description><subject>discontinuous Galerkin method</subject><subject>Divergence</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Galerkin method</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Maxwell equations</subject><subject>Maxwell's equations</subject><subject>Propagation</subject><subject>Time marching</subject><subject>Wave propagation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUg8QmRWFhS_Ow4ttmqqgWkAgvMlps8l1RNHJyUqhufwDfyJbiUlekN99x3pUPIJdARUMpumhpHQkh5RAZAtUwpo_KYDGKkU6EVnJKzrltRCiAoH5DbcdJ-f37Z0rZ99YFJjf2bLxPnQ4JrLPrga7tssK-KZGtj3gbf2qXtK9-ckxNn1x1e_N0heZ1NXyb36fz57mEynqcF01ymSvIMmLBZJh2VTjChUQPlZYaMCeegzBeyxIUoCqmE5FJp4LlTAFaVscqH5OrwN26_b7DrzcpvQhMnDeg805CDopG6PlBF8F0X0Jk2VLUNOwPU7M2YaMbszUQ0PaDbao27fznz9Dj95X8AnuxjhQ</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Panourgias, Konstantinos T.</creator><creator>Ekaterinaris, John A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5392-9575</orcidid></search><sort><creationdate>20171214</creationdate><title>A p‐adaptive method for electromagnetic wave propagation</title><author>Panourgias, Konstantinos T. ; Ekaterinaris, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>discontinuous Galerkin method</topic><topic>Divergence</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Galerkin method</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Maxwell equations</topic><topic>Maxwell's equations</topic><topic>Propagation</topic><topic>Time marching</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panourgias, Konstantinos T.</creatorcontrib><creatorcontrib>Ekaterinaris, John A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panourgias, Konstantinos T.</au><au>Ekaterinaris, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A p‐adaptive method for electromagnetic wave propagation</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2017-12-14</date><risdate>2017</risdate><volume>112</volume><issue>11</issue><spage>1687</spage><epage>1711</epage><pages>1687-1711</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5577</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5392-9575</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2017-12, Vol.112 (11), p.1687-1711 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_1964916180 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | discontinuous Galerkin method Divergence Finite element method Formulations Galerkin method Magnetic fields Mathematical analysis Maxwell equations Maxwell's equations Propagation Time marching Wave propagation |
title | A p‐adaptive method for electromagnetic wave propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20p%E2%80%90adaptive%20method%20for%20electromagnetic%20wave%20propagation&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Panourgias,%20Konstantinos%20T.&rft.date=2017-12-14&rft.volume=112&rft.issue=11&rft.spage=1687&rft.epage=1711&rft.pages=1687-1711&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5577&rft_dat=%3Cproquest_cross%3E1964916180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964916180&rft_id=info:pmid/&rfr_iscdi=true |