A p‐adaptive method for electromagnetic wave propagation

Summary The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2017-12, Vol.112 (11), p.1687-1711
Hauptverfasser: Panourgias, Konstantinos T., Ekaterinaris, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1711
container_issue 11
container_start_page 1687
container_title International journal for numerical methods in engineering
container_volume 112
creator Panourgias, Konstantinos T.
Ekaterinaris, John A.
description Summary The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.
doi_str_mv 10.1002/nme.5577
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1964916180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964916180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUg8QmRWFhS_Ow4ttmqqgWkAgvMlps8l1RNHJyUqhufwDfyJbiUlekN99x3pUPIJdARUMpumhpHQkh5RAZAtUwpo_KYDGKkU6EVnJKzrltRCiAoH5DbcdJ-f37Z0rZ99YFJjf2bLxPnQ4JrLPrga7tssK-KZGtj3gbf2qXtK9-ckxNn1x1e_N0heZ1NXyb36fz57mEynqcF01ymSvIMmLBZJh2VTjChUQPlZYaMCeegzBeyxIUoCqmE5FJp4LlTAFaVscqH5OrwN26_b7DrzcpvQhMnDeg805CDopG6PlBF8F0X0Jk2VLUNOwPU7M2YaMbszUQ0PaDbao27fznz9Dj95X8AnuxjhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964916180</pqid></control><display><type>article</type><title>A p‐adaptive method for electromagnetic wave propagation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Panourgias, Konstantinos T. ; Ekaterinaris, John A.</creator><creatorcontrib>Panourgias, Konstantinos T. ; Ekaterinaris, John A.</creatorcontrib><description>Summary The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5577</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>discontinuous Galerkin method ; Divergence ; Finite element method ; Formulations ; Galerkin method ; Magnetic fields ; Mathematical analysis ; Maxwell equations ; Maxwell's equations ; Propagation ; Time marching ; Wave propagation</subject><ispartof>International journal for numerical methods in engineering, 2017-12, Vol.112 (11), p.1687-1711</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</citedby><cites>FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</cites><orcidid>0000-0001-5392-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5577$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5577$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Panourgias, Konstantinos T.</creatorcontrib><creatorcontrib>Ekaterinaris, John A.</creatorcontrib><title>A p‐adaptive method for electromagnetic wave propagation</title><title>International journal for numerical methods in engineering</title><description>Summary The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.</description><subject>discontinuous Galerkin method</subject><subject>Divergence</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Galerkin method</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Maxwell equations</subject><subject>Maxwell's equations</subject><subject>Propagation</subject><subject>Time marching</subject><subject>Wave propagation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUg8QmRWFhS_Ow4ttmqqgWkAgvMlps8l1RNHJyUqhufwDfyJbiUlekN99x3pUPIJdARUMpumhpHQkh5RAZAtUwpo_KYDGKkU6EVnJKzrltRCiAoH5DbcdJ-f37Z0rZ99YFJjf2bLxPnQ4JrLPrga7tssK-KZGtj3gbf2qXtK9-ckxNn1x1e_N0heZ1NXyb36fz57mEynqcF01ymSvIMmLBZJh2VTjChUQPlZYaMCeegzBeyxIUoCqmE5FJp4LlTAFaVscqH5OrwN26_b7DrzcpvQhMnDeg805CDopG6PlBF8F0X0Jk2VLUNOwPU7M2YaMbszUQ0PaDbao27fznz9Dj95X8AnuxjhQ</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Panourgias, Konstantinos T.</creator><creator>Ekaterinaris, John A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5392-9575</orcidid></search><sort><creationdate>20171214</creationdate><title>A p‐adaptive method for electromagnetic wave propagation</title><author>Panourgias, Konstantinos T. ; Ekaterinaris, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-8734125a447f07f5259e9103d4e225ff1d6b7deb5cc78573789136f811a8d3413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>discontinuous Galerkin method</topic><topic>Divergence</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Galerkin method</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Maxwell equations</topic><topic>Maxwell's equations</topic><topic>Propagation</topic><topic>Time marching</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panourgias, Konstantinos T.</creatorcontrib><creatorcontrib>Ekaterinaris, John A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panourgias, Konstantinos T.</au><au>Ekaterinaris, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A p‐adaptive method for electromagnetic wave propagation</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2017-12-14</date><risdate>2017</risdate><volume>112</volume><issue>11</issue><spage>1687</spage><epage>1711</epage><pages>1687-1711</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5577</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5392-9575</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2017-12, Vol.112 (11), p.1687-1711
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_1964916180
source Wiley Online Library Journals Frontfile Complete
subjects discontinuous Galerkin method
Divergence
Finite element method
Formulations
Galerkin method
Magnetic fields
Mathematical analysis
Maxwell equations
Maxwell's equations
Propagation
Time marching
Wave propagation
title A p‐adaptive method for electromagnetic wave propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20p%E2%80%90adaptive%20method%20for%20electromagnetic%20wave%20propagation&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Panourgias,%20Konstantinos%20T.&rft.date=2017-12-14&rft.volume=112&rft.issue=11&rft.spage=1687&rft.epage=1711&rft.pages=1687-1711&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5577&rft_dat=%3Cproquest_cross%3E1964916180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964916180&rft_id=info:pmid/&rfr_iscdi=true