Asymptotic results for jump probabilities associated to the multiple scan statistic

The concept of pattern arises in many applications comprising experimental trials with two or more possible outcomes in each trial. A binary scan of type r  /  k is a special pattern referring to success–failure strings of fixed length k that contain at least r -successes, where r ,  k are positive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2018-10, Vol.70 (5), p.951-968
Hauptverfasser: Koutras, Markos V., Lyberopoulos, Demetrios P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 5
container_start_page 951
container_title Annals of the Institute of Statistical Mathematics
container_volume 70
creator Koutras, Markos V.
Lyberopoulos, Demetrios P.
description The concept of pattern arises in many applications comprising experimental trials with two or more possible outcomes in each trial. A binary scan of type r  /  k is a special pattern referring to success–failure strings of fixed length k that contain at least r -successes, where r ,  k are positive integers with r ≤ k . The multiple scan statistic W t , k , r is defined as the enumerating random variable for the overlapping moving windows occurring until trial t which include a scan of type r  /  k . In the present work, we consider a sequence of independent binary trials with not necessarily equal probabilities of success and develop upper bounds for the probability of the event that the multiple scan statistic will perform a jump from ℓ to ℓ + 1 (where ℓ is a nonnegative integer) in a finite time horizon.
doi_str_mv 10.1007/s10463-017-0621-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1964916179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964916179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-cc4003622e12df24679fb53081394b67b4bf369cef4c0529993a663d6ba0ce373</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvu7NSpx6rin1SJAZgtx3XAVdIEnzv022MUBhamk06_9-7dY-wa4RYB6jtCqLQSgLUALVHgCZvhopbCwEKeshmABKHK5pxdEO0AQEklZ-x1Rcd-zEOOnqdAhy4Tb4fEd4d-5GMaGtfELuYYiDuiwUeXw5bngefPwPuCx7ELnLzbc8ouRypGl-ysdR2Fq985Z-8P92_rJ7F5eXxerzbCS73MwvuqpNBSBpTbVla6Nm2zULBEZapG103VtEobH9rKlyeMMcpprba6ceCDqtWc3Uy-JefXIVC2u-GQ9uWkRaMrgxprUyicKJ8GohRaO6bYu3S0CPanOzt1Z0t39qc7i0UjJw0Vdv8R0h_nf0XfCdJxuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964916179</pqid></control><display><type>article</type><title>Asymptotic results for jump probabilities associated to the multiple scan statistic</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>Koutras, Markos V. ; Lyberopoulos, Demetrios P.</creator><creatorcontrib>Koutras, Markos V. ; Lyberopoulos, Demetrios P.</creatorcontrib><description>The concept of pattern arises in many applications comprising experimental trials with two or more possible outcomes in each trial. A binary scan of type r  /  k is a special pattern referring to success–failure strings of fixed length k that contain at least r -successes, where r ,  k are positive integers with r ≤ k . The multiple scan statistic W t , k , r is defined as the enumerating random variable for the overlapping moving windows occurring until trial t which include a scan of type r  /  k . In the present work, we consider a sequence of independent binary trials with not necessarily equal probabilities of success and develop upper bounds for the probability of the event that the multiple scan statistic will perform a jump from ℓ to ℓ + 1 (where ℓ is a nonnegative integer) in a finite time horizon.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-017-0621-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Economics ; Finance ; Insurance ; Integers ; Management ; Mathematics ; Mathematics and Statistics ; Random variables ; Statistical analysis ; Statistics ; Statistics for Business ; Strings ; Upper bounds</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2018-10, Vol.70 (5), p.951-968</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2017</rights><rights>Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-cc4003622e12df24679fb53081394b67b4bf369cef4c0529993a663d6ba0ce373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-017-0621-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-017-0621-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Koutras, Markos V.</creatorcontrib><creatorcontrib>Lyberopoulos, Demetrios P.</creatorcontrib><title>Asymptotic results for jump probabilities associated to the multiple scan statistic</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>The concept of pattern arises in many applications comprising experimental trials with two or more possible outcomes in each trial. A binary scan of type r  /  k is a special pattern referring to success–failure strings of fixed length k that contain at least r -successes, where r ,  k are positive integers with r ≤ k . The multiple scan statistic W t , k , r is defined as the enumerating random variable for the overlapping moving windows occurring until trial t which include a scan of type r  /  k . In the present work, we consider a sequence of independent binary trials with not necessarily equal probabilities of success and develop upper bounds for the probability of the event that the multiple scan statistic will perform a jump from ℓ to ℓ + 1 (where ℓ is a nonnegative integer) in a finite time horizon.</description><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Integers</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Strings</subject><subject>Upper bounds</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvu7NSpx6rin1SJAZgtx3XAVdIEnzv022MUBhamk06_9-7dY-wa4RYB6jtCqLQSgLUALVHgCZvhopbCwEKeshmABKHK5pxdEO0AQEklZ-x1Rcd-zEOOnqdAhy4Tb4fEd4d-5GMaGtfELuYYiDuiwUeXw5bngefPwPuCx7ELnLzbc8ouRypGl-ysdR2Fq985Z-8P92_rJ7F5eXxerzbCS73MwvuqpNBSBpTbVla6Nm2zULBEZapG103VtEobH9rKlyeMMcpprba6ceCDqtWc3Uy-JefXIVC2u-GQ9uWkRaMrgxprUyicKJ8GohRaO6bYu3S0CPanOzt1Z0t39qc7i0UjJw0Vdv8R0h_nf0XfCdJxuA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Koutras, Markos V.</creator><creator>Lyberopoulos, Demetrios P.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20181001</creationdate><title>Asymptotic results for jump probabilities associated to the multiple scan statistic</title><author>Koutras, Markos V. ; Lyberopoulos, Demetrios P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-cc4003622e12df24679fb53081394b67b4bf369cef4c0529993a663d6ba0ce373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Integers</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Strings</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koutras, Markos V.</creatorcontrib><creatorcontrib>Lyberopoulos, Demetrios P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koutras, Markos V.</au><au>Lyberopoulos, Demetrios P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic results for jump probabilities associated to the multiple scan statistic</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>70</volume><issue>5</issue><spage>951</spage><epage>968</epage><pages>951-968</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>The concept of pattern arises in many applications comprising experimental trials with two or more possible outcomes in each trial. A binary scan of type r  /  k is a special pattern referring to success–failure strings of fixed length k that contain at least r -successes, where r ,  k are positive integers with r ≤ k . The multiple scan statistic W t , k , r is defined as the enumerating random variable for the overlapping moving windows occurring until trial t which include a scan of type r  /  k . In the present work, we consider a sequence of independent binary trials with not necessarily equal probabilities of success and develop upper bounds for the probability of the event that the multiple scan statistic will perform a jump from ℓ to ℓ + 1 (where ℓ is a nonnegative integer) in a finite time horizon.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-017-0621-1</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-3157
ispartof Annals of the Institute of Statistical Mathematics, 2018-10, Vol.70 (5), p.951-968
issn 0020-3157
1572-9052
language eng
recordid cdi_proquest_journals_1964916179
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals
subjects Economics
Finance
Insurance
Integers
Management
Mathematics
Mathematics and Statistics
Random variables
Statistical analysis
Statistics
Statistics for Business
Strings
Upper bounds
title Asymptotic results for jump probabilities associated to the multiple scan statistic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20results%20for%20jump%20probabilities%20associated%20to%20the%20multiple%20scan%20statistic&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Koutras,%20Markos%20V.&rft.date=2018-10-01&rft.volume=70&rft.issue=5&rft.spage=951&rft.epage=968&rft.pages=951-968&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-017-0621-1&rft_dat=%3Cproquest_cross%3E1964916179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964916179&rft_id=info:pmid/&rfr_iscdi=true