Polynomials‐based summation inequalities and their applications to discrete‐time systems with time‐varying delays

Summary This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2017-11, Vol.27 (17), p.3604-3619
Hauptverfasser: Lee, Seok Young, Lee, Won Il, Park, PooGyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3619
container_issue 17
container_start_page 3604
container_title International journal of robust and nonlinear control
container_volume 27
creator Lee, Seok Young
Lee, Won Il
Park, PooGyeon
description Summary This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.3755
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1964540867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964540867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-c99b2c522af76c681f997f0d94fb01f7b3218697c11c255c0373e91df70dae313</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI6CjxBw46ZjftqmWcrgHwwqouuQpomToX8mqUN3PoLP6JOYzrh1dS_3fJxzOQCcY7TACJEr16oFZVl2AGYYcZ5gQvnhtKc8KTihx-DE-w1CUSPpDGyfu3psu8bK2v98fZfS6wr6oWlksF0Lbas_BlnbYLWHsq1gWGvroOz72qod4mHoYGW9cjro6BBso6EffdCNh1sb1nC6ROFTutG277DStRz9KTgyMVKf_c05eLu9eV3eJ6unu4fl9SpRlKIsUZyXRGWESMNylRfYcM4MqnhqSoQNKynBRc6ZwliRLFOIMqo5rgxDldQU0zm42Pv2rvsYtA9i0w2ujZEC8zzNUlTkLFKXe0q5znunjeidbeLDAiMx1SpirWKqNaLJHt3aWo__cuLlcbnjfwFxnH53</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964540867</pqid></control><display><type>article</type><title>Polynomials‐based summation inequalities and their applications to discrete‐time systems with time‐varying delays</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Seok Young ; Lee, Won Il ; Park, PooGyeon</creator><creatorcontrib>Lee, Seok Young ; Lee, Won Il ; Park, PooGyeon</creatorcontrib><description>Summary This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3755</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Discrete time systems ; discrete‐time system, linear matrix inequality (LMI) ; Functions (mathematics) ; Inequalities ; Inequality ; Lyapunov–Krasovskii functional ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Polynomials ; stability analysis ; Stability criteria ; summation inequality ; time‐varying delay</subject><ispartof>International journal of robust and nonlinear control, 2017-11, Vol.27 (17), p.3604-3619</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-c99b2c522af76c681f997f0d94fb01f7b3218697c11c255c0373e91df70dae313</citedby><cites>FETCH-LOGICAL-c3305-c99b2c522af76c681f997f0d94fb01f7b3218697c11c255c0373e91df70dae313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3755$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3755$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lee, Seok Young</creatorcontrib><creatorcontrib>Lee, Won Il</creatorcontrib><creatorcontrib>Park, PooGyeon</creatorcontrib><title>Polynomials‐based summation inequalities and their applications to discrete‐time systems with time‐varying delays</title><title>International journal of robust and nonlinear control</title><description>Summary This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>Discrete time systems</subject><subject>discrete‐time system, linear matrix inequality (LMI)</subject><subject>Functions (mathematics)</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Lyapunov–Krasovskii functional</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Polynomials</subject><subject>stability analysis</subject><subject>Stability criteria</subject><subject>summation inequality</subject><subject>time‐varying delay</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI6CjxBw46ZjftqmWcrgHwwqouuQpomToX8mqUN3PoLP6JOYzrh1dS_3fJxzOQCcY7TACJEr16oFZVl2AGYYcZ5gQvnhtKc8KTihx-DE-w1CUSPpDGyfu3psu8bK2v98fZfS6wr6oWlksF0Lbas_BlnbYLWHsq1gWGvroOz72qod4mHoYGW9cjro6BBso6EffdCNh1sb1nC6ROFTutG277DStRz9KTgyMVKf_c05eLu9eV3eJ6unu4fl9SpRlKIsUZyXRGWESMNylRfYcM4MqnhqSoQNKynBRc6ZwliRLFOIMqo5rgxDldQU0zm42Pv2rvsYtA9i0w2ujZEC8zzNUlTkLFKXe0q5znunjeidbeLDAiMx1SpirWKqNaLJHt3aWo__cuLlcbnjfwFxnH53</recordid><startdate>20171125</startdate><enddate>20171125</enddate><creator>Lee, Seok Young</creator><creator>Lee, Won Il</creator><creator>Park, PooGyeon</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171125</creationdate><title>Polynomials‐based summation inequalities and their applications to discrete‐time systems with time‐varying delays</title><author>Lee, Seok Young ; Lee, Won Il ; Park, PooGyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-c99b2c522af76c681f997f0d94fb01f7b3218697c11c255c0373e91df70dae313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Discrete time systems</topic><topic>discrete‐time system, linear matrix inequality (LMI)</topic><topic>Functions (mathematics)</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Lyapunov–Krasovskii functional</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Polynomials</topic><topic>stability analysis</topic><topic>Stability criteria</topic><topic>summation inequality</topic><topic>time‐varying delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seok Young</creatorcontrib><creatorcontrib>Lee, Won Il</creatorcontrib><creatorcontrib>Park, PooGyeon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seok Young</au><au>Lee, Won Il</au><au>Park, PooGyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomials‐based summation inequalities and their applications to discrete‐time systems with time‐varying delays</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2017-11-25</date><risdate>2017</risdate><volume>27</volume><issue>17</issue><spage>3604</spage><epage>3619</epage><pages>3604-3619</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/rnc.3755</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2017-11, Vol.27 (17), p.3604-3619
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_1964540867
source Wiley Online Library Journals Frontfile Complete
subjects Discrete time systems
discrete‐time system, linear matrix inequality (LMI)
Functions (mathematics)
Inequalities
Inequality
Lyapunov–Krasovskii functional
Mathematical analysis
Matrix algebra
Matrix methods
Polynomials
stability analysis
Stability criteria
summation inequality
time‐varying delay
title Polynomials‐based summation inequalities and their applications to discrete‐time systems with time‐varying delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomials%E2%80%90based%20summation%20inequalities%20and%20their%20applications%20to%20discrete%E2%80%90time%20systems%20with%20time%E2%80%90varying%20delays&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Lee,%20Seok%20Young&rft.date=2017-11-25&rft.volume=27&rft.issue=17&rft.spage=3604&rft.epage=3619&rft.pages=3604-3619&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3755&rft_dat=%3Cproquest_cross%3E1964540867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964540867&rft_id=info:pmid/&rfr_iscdi=true