Local radial basis function collocation method for bending analyses of quasicrystal plates

•Meshless formulations are developed for static and dynamic bending of QC plates.•The phonon-phason coupling effects are studied numerically.•The influence of elastic foundation and variable plate thickness is investigated.•The response of QC plates to impact loading is simulated. The local radial b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2017-10, Vol.50, p.463-483
Hauptverfasser: Chiang, Y.C., Young, D.L., Sladek, J., Sladek, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue
container_start_page 463
container_title Applied Mathematical Modelling
container_volume 50
creator Chiang, Y.C.
Young, D.L.
Sladek, J.
Sladek, V.
description •Meshless formulations are developed for static and dynamic bending of QC plates.•The phonon-phason coupling effects are studied numerically.•The influence of elastic foundation and variable plate thickness is investigated.•The response of QC plates to impact loading is simulated. The local radial basis function collocation method (LRBFCM) is proposed for plate bending analysis in orthorhombic quasicrystals (QCs) under static and transient dynamic loads. Three common types of the plate bending problems are considered: (1) QC plates resting on Winkler foundation (2) QC plates with variable thickness and (3) QC plates under a transient dynamic load. According to the Reissner–Mindlin plate bending theory, there is allowed to simulate the behavior of the two excitations in QC plates, phonon and phason, by 2D strong formulations for the system of governing equations. The governing equations, which describe the phason displacements, are based on Agiasofitou and Lazar elastodynamic model. Numerical results demonstrate the effect of the elastic foundation, as well as plate thickness on the phonon and phason characteristics in this paper. For the transient dynamic analysis, the influence of the phason friction coefficients on the responses of QC plate to transient dynamic loads is also studied.
doi_str_mv 10.1016/j.apm.2017.05.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1964520404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X17303918</els_id><sourcerecordid>1964520404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c4e4fab0377b80e310c3d5d1a046191b70c8480fcaea709964247cf0b30671763</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvAU8t760abPFkyx-wYIXBfES0vRFU7pNN2mF_fdmrQdPwoM3jzczDEPIJYOUASuv21QN2zQDJlIo4rAjsoAcRFIBfzv-g0_JWQgtABTxWpD3jdOqo141Nq5aBRuomXo9WtdT7bouvn_wFsdP11DjPK2xb2z_QVWvun3AQJ2huylKtd-HMdoMnRoxnJMTo7qAF797SV7v717Wj8nm-eFpfbtJdJ4VY6I5cqNqyIWoV4A5A503RcMU8JJVrBagV3wFRitUAqqq5BkX2kCdQymYKPMluZp9B-92E4ZRtm7yMVuQLLKLDDjwyGIzS3sXgkcjB2-3yu8lA3moULYyVigPFUoo4rCouZk1GON_WfQyaIu9xsZ61KNsnP1H_Q05pnnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964520404</pqid></control><display><type>article</type><title>Local radial basis function collocation method for bending analyses of quasicrystal plates</title><source>Education Source</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><creator>Chiang, Y.C. ; Young, D.L. ; Sladek, J. ; Sladek, V.</creator><creatorcontrib>Chiang, Y.C. ; Young, D.L. ; Sladek, J. ; Sladek, V.</creatorcontrib><description>•Meshless formulations are developed for static and dynamic bending of QC plates.•The phonon-phason coupling effects are studied numerically.•The influence of elastic foundation and variable plate thickness is investigated.•The response of QC plates to impact loading is simulated. The local radial basis function collocation method (LRBFCM) is proposed for plate bending analysis in orthorhombic quasicrystals (QCs) under static and transient dynamic loads. Three common types of the plate bending problems are considered: (1) QC plates resting on Winkler foundation (2) QC plates with variable thickness and (3) QC plates under a transient dynamic load. According to the Reissner–Mindlin plate bending theory, there is allowed to simulate the behavior of the two excitations in QC plates, phonon and phason, by 2D strong formulations for the system of governing equations. The governing equations, which describe the phason displacements, are based on Agiasofitou and Lazar elastodynamic model. Numerical results demonstrate the effect of the elastic foundation, as well as plate thickness on the phonon and phason characteristics in this paper. For the transient dynamic analysis, the influence of the phason friction coefficients on the responses of QC plate to transient dynamic loads is also studied.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2017.05.051</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Basis functions ; Bending ; Bending theory ; Collocation methods ; Computer simulation ; Crystals ; Dynamic loads ; Elastodynamics ; Formulations ; Local radial basis function collocation method ; Mathematical models ; Mindlin plates ; Numerical analysis ; Orthorhombic quasicrystal ; Phonon and phason displacements ; Plates ; Quasicrystals ; Radial basis function ; Reissner−Mindlin theory ; Studies ; Variable thickness</subject><ispartof>Applied Mathematical Modelling, 2017-10, Vol.50, p.463-483</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c4e4fab0377b80e310c3d5d1a046191b70c8480fcaea709964247cf0b30671763</citedby><cites>FETCH-LOGICAL-c325t-c4e4fab0377b80e310c3d5d1a046191b70c8480fcaea709964247cf0b30671763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X17303918$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chiang, Y.C.</creatorcontrib><creatorcontrib>Young, D.L.</creatorcontrib><creatorcontrib>Sladek, J.</creatorcontrib><creatorcontrib>Sladek, V.</creatorcontrib><title>Local radial basis function collocation method for bending analyses of quasicrystal plates</title><title>Applied Mathematical Modelling</title><description>•Meshless formulations are developed for static and dynamic bending of QC plates.•The phonon-phason coupling effects are studied numerically.•The influence of elastic foundation and variable plate thickness is investigated.•The response of QC plates to impact loading is simulated. The local radial basis function collocation method (LRBFCM) is proposed for plate bending analysis in orthorhombic quasicrystals (QCs) under static and transient dynamic loads. Three common types of the plate bending problems are considered: (1) QC plates resting on Winkler foundation (2) QC plates with variable thickness and (3) QC plates under a transient dynamic load. According to the Reissner–Mindlin plate bending theory, there is allowed to simulate the behavior of the two excitations in QC plates, phonon and phason, by 2D strong formulations for the system of governing equations. The governing equations, which describe the phason displacements, are based on Agiasofitou and Lazar elastodynamic model. Numerical results demonstrate the effect of the elastic foundation, as well as plate thickness on the phonon and phason characteristics in this paper. For the transient dynamic analysis, the influence of the phason friction coefficients on the responses of QC plate to transient dynamic loads is also studied.</description><subject>Basis functions</subject><subject>Bending</subject><subject>Bending theory</subject><subject>Collocation methods</subject><subject>Computer simulation</subject><subject>Crystals</subject><subject>Dynamic loads</subject><subject>Elastodynamics</subject><subject>Formulations</subject><subject>Local radial basis function collocation method</subject><subject>Mathematical models</subject><subject>Mindlin plates</subject><subject>Numerical analysis</subject><subject>Orthorhombic quasicrystal</subject><subject>Phonon and phason displacements</subject><subject>Plates</subject><subject>Quasicrystals</subject><subject>Radial basis function</subject><subject>Reissner−Mindlin theory</subject><subject>Studies</subject><subject>Variable thickness</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvAU8t760abPFkyx-wYIXBfES0vRFU7pNN2mF_fdmrQdPwoM3jzczDEPIJYOUASuv21QN2zQDJlIo4rAjsoAcRFIBfzv-g0_JWQgtABTxWpD3jdOqo141Nq5aBRuomXo9WtdT7bouvn_wFsdP11DjPK2xb2z_QVWvun3AQJ2huylKtd-HMdoMnRoxnJMTo7qAF797SV7v717Wj8nm-eFpfbtJdJ4VY6I5cqNqyIWoV4A5A503RcMU8JJVrBagV3wFRitUAqqq5BkX2kCdQymYKPMluZp9B-92E4ZRtm7yMVuQLLKLDDjwyGIzS3sXgkcjB2-3yu8lA3moULYyVigPFUoo4rCouZk1GON_WfQyaIu9xsZ61KNsnP1H_Q05pnnE</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Chiang, Y.C.</creator><creator>Young, D.L.</creator><creator>Sladek, J.</creator><creator>Sladek, V.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201710</creationdate><title>Local radial basis function collocation method for bending analyses of quasicrystal plates</title><author>Chiang, Y.C. ; Young, D.L. ; Sladek, J. ; Sladek, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c4e4fab0377b80e310c3d5d1a046191b70c8480fcaea709964247cf0b30671763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Basis functions</topic><topic>Bending</topic><topic>Bending theory</topic><topic>Collocation methods</topic><topic>Computer simulation</topic><topic>Crystals</topic><topic>Dynamic loads</topic><topic>Elastodynamics</topic><topic>Formulations</topic><topic>Local radial basis function collocation method</topic><topic>Mathematical models</topic><topic>Mindlin plates</topic><topic>Numerical analysis</topic><topic>Orthorhombic quasicrystal</topic><topic>Phonon and phason displacements</topic><topic>Plates</topic><topic>Quasicrystals</topic><topic>Radial basis function</topic><topic>Reissner−Mindlin theory</topic><topic>Studies</topic><topic>Variable thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Y.C.</creatorcontrib><creatorcontrib>Young, D.L.</creatorcontrib><creatorcontrib>Sladek, J.</creatorcontrib><creatorcontrib>Sladek, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Y.C.</au><au>Young, D.L.</au><au>Sladek, J.</au><au>Sladek, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local radial basis function collocation method for bending analyses of quasicrystal plates</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-10</date><risdate>2017</risdate><volume>50</volume><spage>463</spage><epage>483</epage><pages>463-483</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Meshless formulations are developed for static and dynamic bending of QC plates.•The phonon-phason coupling effects are studied numerically.•The influence of elastic foundation and variable plate thickness is investigated.•The response of QC plates to impact loading is simulated. The local radial basis function collocation method (LRBFCM) is proposed for plate bending analysis in orthorhombic quasicrystals (QCs) under static and transient dynamic loads. Three common types of the plate bending problems are considered: (1) QC plates resting on Winkler foundation (2) QC plates with variable thickness and (3) QC plates under a transient dynamic load. According to the Reissner–Mindlin plate bending theory, there is allowed to simulate the behavior of the two excitations in QC plates, phonon and phason, by 2D strong formulations for the system of governing equations. The governing equations, which describe the phason displacements, are based on Agiasofitou and Lazar elastodynamic model. Numerical results demonstrate the effect of the elastic foundation, as well as plate thickness on the phonon and phason characteristics in this paper. For the transient dynamic analysis, the influence of the phason friction coefficients on the responses of QC plate to transient dynamic loads is also studied.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2017.05.051</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2017-10, Vol.50, p.463-483
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_1964520404
source Education Source; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete
subjects Basis functions
Bending
Bending theory
Collocation methods
Computer simulation
Crystals
Dynamic loads
Elastodynamics
Formulations
Local radial basis function collocation method
Mathematical models
Mindlin plates
Numerical analysis
Orthorhombic quasicrystal
Phonon and phason displacements
Plates
Quasicrystals
Radial basis function
Reissner−Mindlin theory
Studies
Variable thickness
title Local radial basis function collocation method for bending analyses of quasicrystal plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20radial%20basis%20function%20collocation%20method%20for%20bending%20analyses%20of%20quasicrystal%20plates&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Chiang,%20Y.C.&rft.date=2017-10&rft.volume=50&rft.spage=463&rft.epage=483&rft.pages=463-483&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2017.05.051&rft_dat=%3Cproquest_cross%3E1964520404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964520404&rft_id=info:pmid/&rft_els_id=S0307904X17303918&rfr_iscdi=true