Fast formation of isogeometric Galerkin matrices by weighted quadrature

In this paper we propose an algorithm for the formation of matrices of isogeometric Galerkin methods. The algorithm is based on three ideas. The first is that we perform the external loop over the rows of the matrix. The second is that we calculate the row entries by weighted quadrature. The third i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2017-04, Vol.316, p.606-622
Hauptverfasser: Calabrò, F., Sangalli, G., Tani, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 622
container_issue
container_start_page 606
container_title Computer methods in applied mechanics and engineering
container_volume 316
creator Calabrò, F.
Sangalli, G.
Tani, M.
description In this paper we propose an algorithm for the formation of matrices of isogeometric Galerkin methods. The algorithm is based on three ideas. The first is that we perform the external loop over the rows of the matrix. The second is that we calculate the row entries by weighted quadrature. The third is that we exploit the (local) tensor product structure of the basis functions. While all ingredients have a fundamental role for computational efficiency, the major conceptual change of paradigm with respect to the standard implementation is the idea of using weighted quadrature: the test function is incorporated in the integration weight while the trial function, the geometry parametrization and the PDEs coefficients form the integrand function. This approach is very effective in reducing the computational cost, while maintaining the optimal order of approximation of the method. Analysis of the cost is confirmed by numerical testing, where we show that, for p large enough, the time required by the floating point operations is less than the time spent in unavoidable memory operations (the sparse matrix allocation and memory write). The proposed algorithm allows significant time saving when assembling isogeometric Galerkin matrices for all the degrees of the test spline space and paves the way for a use of high-degree k-refinement in isogeometric analysis. •We discuss the formation of isogeometric Galerkin matrices by row-loop and weighted quadrature.•We give an estimate of the computational cost.•We perform tests showing that the proposed algorithm over-performs other approaches.
doi_str_mv 10.1016/j.cma.2016.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1964518221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782516311495</els_id><sourcerecordid>1964518221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-462a0cf0b719193bdf21b475ea578518c15c95fd536e917d1ffa74827033175f3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4twSp03TihOa2ECaxAXOUZo6I2VttiQD8e_JNM74Ylv264-HkFugBVCo74dCj6pgKSxoW1Aoz8gMGtHmDMrmnMworXguGsYvyVUIA03WAJuR1VKFmBnnRxWtmzJnMhvcBt2I0VudrdQW_aedslRPOYas-8m-0W4-IvbZ_qB6r-LB4zW5MGob8ObPz8n78ult8ZyvX1cvi8d1rkvGY17VTFFtaCeghbbsesOgqwRHxUXDodHAdctNz8saWxA9GKNE1TBByxIEN-Wc3J3m7rzbHzBEObiDn9JKCW1dpREsfTwncOrS3oXg0cidt6PyPxKoPPKSg0y85JGXpK1MvJLm4aTBdP6XRS-Dtjhp7K1HHWXv7D_qX1C-ciI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964518221</pqid></control><display><type>article</type><title>Fast formation of isogeometric Galerkin matrices by weighted quadrature</title><source>Elsevier ScienceDirect Journals</source><creator>Calabrò, F. ; Sangalli, G. ; Tani, M.</creator><creatorcontrib>Calabrò, F. ; Sangalli, G. ; Tani, M.</creatorcontrib><description>In this paper we propose an algorithm for the formation of matrices of isogeometric Galerkin methods. The algorithm is based on three ideas. The first is that we perform the external loop over the rows of the matrix. The second is that we calculate the row entries by weighted quadrature. The third is that we exploit the (local) tensor product structure of the basis functions. While all ingredients have a fundamental role for computational efficiency, the major conceptual change of paradigm with respect to the standard implementation is the idea of using weighted quadrature: the test function is incorporated in the integration weight while the trial function, the geometry parametrization and the PDEs coefficients form the integrand function. This approach is very effective in reducing the computational cost, while maintaining the optimal order of approximation of the method. Analysis of the cost is confirmed by numerical testing, where we show that, for p large enough, the time required by the floating point operations is less than the time spent in unavoidable memory operations (the sparse matrix allocation and memory write). The proposed algorithm allows significant time saving when assembling isogeometric Galerkin matrices for all the degrees of the test spline space and paves the way for a use of high-degree k-refinement in isogeometric analysis. •We discuss the formation of isogeometric Galerkin matrices by row-loop and weighted quadrature.•We give an estimate of the computational cost.•We perform tests showing that the proposed algorithm over-performs other approaches.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.09.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-refinement ; Algorithms ; Basis functions ; Computational efficiency ; Computing time ; Cost analysis ; Floating point arithmetic ; Floating structures ; Galerkin method ; Geometry ; Isogeometric analysis ; Loops ; Parameterization ; Splines ; Weight ; Weighted quadrature</subject><ispartof>Computer methods in applied mechanics and engineering, 2017-04, Vol.316, p.606-622</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-462a0cf0b719193bdf21b475ea578518c15c95fd536e917d1ffa74827033175f3</citedby><cites>FETCH-LOGICAL-c325t-462a0cf0b719193bdf21b475ea578518c15c95fd536e917d1ffa74827033175f3</cites><orcidid>0000-0002-5642-1969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782516311495$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Calabrò, F.</creatorcontrib><creatorcontrib>Sangalli, G.</creatorcontrib><creatorcontrib>Tani, M.</creatorcontrib><title>Fast formation of isogeometric Galerkin matrices by weighted quadrature</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper we propose an algorithm for the formation of matrices of isogeometric Galerkin methods. The algorithm is based on three ideas. The first is that we perform the external loop over the rows of the matrix. The second is that we calculate the row entries by weighted quadrature. The third is that we exploit the (local) tensor product structure of the basis functions. While all ingredients have a fundamental role for computational efficiency, the major conceptual change of paradigm with respect to the standard implementation is the idea of using weighted quadrature: the test function is incorporated in the integration weight while the trial function, the geometry parametrization and the PDEs coefficients form the integrand function. This approach is very effective in reducing the computational cost, while maintaining the optimal order of approximation of the method. Analysis of the cost is confirmed by numerical testing, where we show that, for p large enough, the time required by the floating point operations is less than the time spent in unavoidable memory operations (the sparse matrix allocation and memory write). The proposed algorithm allows significant time saving when assembling isogeometric Galerkin matrices for all the degrees of the test spline space and paves the way for a use of high-degree k-refinement in isogeometric analysis. •We discuss the formation of isogeometric Galerkin matrices by row-loop and weighted quadrature.•We give an estimate of the computational cost.•We perform tests showing that the proposed algorithm over-performs other approaches.</description><subject>[formula omitted]-refinement</subject><subject>Algorithms</subject><subject>Basis functions</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Cost analysis</subject><subject>Floating point arithmetic</subject><subject>Floating structures</subject><subject>Galerkin method</subject><subject>Geometry</subject><subject>Isogeometric analysis</subject><subject>Loops</subject><subject>Parameterization</subject><subject>Splines</subject><subject>Weight</subject><subject>Weighted quadrature</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4twSp03TihOa2ECaxAXOUZo6I2VttiQD8e_JNM74Ylv264-HkFugBVCo74dCj6pgKSxoW1Aoz8gMGtHmDMrmnMworXguGsYvyVUIA03WAJuR1VKFmBnnRxWtmzJnMhvcBt2I0VudrdQW_aedslRPOYas-8m-0W4-IvbZ_qB6r-LB4zW5MGob8ObPz8n78ult8ZyvX1cvi8d1rkvGY17VTFFtaCeghbbsesOgqwRHxUXDodHAdctNz8saWxA9GKNE1TBByxIEN-Wc3J3m7rzbHzBEObiDn9JKCW1dpREsfTwncOrS3oXg0cidt6PyPxKoPPKSg0y85JGXpK1MvJLm4aTBdP6XRS-Dtjhp7K1HHWXv7D_qX1C-ciI</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Calabrò, F.</creator><creator>Sangalli, G.</creator><creator>Tani, M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5642-1969</orcidid></search><sort><creationdate>20170401</creationdate><title>Fast formation of isogeometric Galerkin matrices by weighted quadrature</title><author>Calabrò, F. ; Sangalli, G. ; Tani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-462a0cf0b719193bdf21b475ea578518c15c95fd536e917d1ffa74827033175f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>[formula omitted]-refinement</topic><topic>Algorithms</topic><topic>Basis functions</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Cost analysis</topic><topic>Floating point arithmetic</topic><topic>Floating structures</topic><topic>Galerkin method</topic><topic>Geometry</topic><topic>Isogeometric analysis</topic><topic>Loops</topic><topic>Parameterization</topic><topic>Splines</topic><topic>Weight</topic><topic>Weighted quadrature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calabrò, F.</creatorcontrib><creatorcontrib>Sangalli, G.</creatorcontrib><creatorcontrib>Tani, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calabrò, F.</au><au>Sangalli, G.</au><au>Tani, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast formation of isogeometric Galerkin matrices by weighted quadrature</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>316</volume><spage>606</spage><epage>622</epage><pages>606-622</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this paper we propose an algorithm for the formation of matrices of isogeometric Galerkin methods. The algorithm is based on three ideas. The first is that we perform the external loop over the rows of the matrix. The second is that we calculate the row entries by weighted quadrature. The third is that we exploit the (local) tensor product structure of the basis functions. While all ingredients have a fundamental role for computational efficiency, the major conceptual change of paradigm with respect to the standard implementation is the idea of using weighted quadrature: the test function is incorporated in the integration weight while the trial function, the geometry parametrization and the PDEs coefficients form the integrand function. This approach is very effective in reducing the computational cost, while maintaining the optimal order of approximation of the method. Analysis of the cost is confirmed by numerical testing, where we show that, for p large enough, the time required by the floating point operations is less than the time spent in unavoidable memory operations (the sparse matrix allocation and memory write). The proposed algorithm allows significant time saving when assembling isogeometric Galerkin matrices for all the degrees of the test spline space and paves the way for a use of high-degree k-refinement in isogeometric analysis. •We discuss the formation of isogeometric Galerkin matrices by row-loop and weighted quadrature.•We give an estimate of the computational cost.•We perform tests showing that the proposed algorithm over-performs other approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.09.013</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5642-1969</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2017-04, Vol.316, p.606-622
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_1964518221
source Elsevier ScienceDirect Journals
subjects [formula omitted]-refinement
Algorithms
Basis functions
Computational efficiency
Computing time
Cost analysis
Floating point arithmetic
Floating structures
Galerkin method
Geometry
Isogeometric analysis
Loops
Parameterization
Splines
Weight
Weighted quadrature
title Fast formation of isogeometric Galerkin matrices by weighted quadrature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20formation%20of%20isogeometric%20Galerkin%20matrices%20by%20weighted%20quadrature&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Calabr%C3%B2,%20F.&rft.date=2017-04-01&rft.volume=316&rft.spage=606&rft.epage=622&rft.pages=606-622&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.09.013&rft_dat=%3Cproquest_cross%3E1964518221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964518221&rft_id=info:pmid/&rft_els_id=S0045782516311495&rfr_iscdi=true