Sonication‐Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry
Gallium is a near room temperature liquid metal with extraordinary properties that partly originate from the self‐limiting oxide layer formed on its surface. Taking advantage of the surface gallium oxide (Ga2O3), this work introduces a novel technique to synthesize gallium oxide nanoflakes at high y...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-11, Vol.27 (43), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 43 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Syed, Nitu Zavabeti, Ali Mohiuddin, Md Zhang, Baoyue Wang, Yichao Datta, Robi S. Atkin, Paul Carey, Benjamin J. Tan, Cheng van Embden, Joel Chesman, Anthony S. R. Ou, Jian Zhen Daeneke, Torben Kalantar‐zadeh, Kourosh |
description | Gallium is a near room temperature liquid metal with extraordinary properties that partly originate from the self‐limiting oxide layer formed on its surface. Taking advantage of the surface gallium oxide (Ga2O3), this work introduces a novel technique to synthesize gallium oxide nanoflakes at high yield by harvesting the self‐limiting native surface oxide of gallium. The synthesis process follows a facile two‐step method comprising liquid gallium metal sonication in DI water and subsequent annealing. In order to explore the functionalities of the product, the obtained hexagonal α‐Ga2O3 nanoflakes are used as a photocatalytic material to decompose organic model dyes. Excellent photocatalytic activity is observed under solar light irradiation. To elucidate the origin of these enhanced catalytic properties, the electronic band structure of the synthesized α‐Ga2O3 is carefully assessed. Consequently, this excellent photocatalytic performance is associated with an energy bandgap reduction, due to the presence of trap states, which are located at ≈1.65 eV under the conduction band minimum. This work presents a novel route for synthesizing oxide nanostructures that can be extended to other low melting temperature metals and their alloys, with great prospects for scaling up and high yield synthesis.
Sonication‐assisted route employed on liquid metal gallium is presented as a new route for synthesizing gallium oxide (Ga2O3) nanoflakes. The suspension of Ga2O3 is used for dye degradation, showing a remarkable efficiency, which is ascribed to the presence of trap bands. |
doi_str_mv | 10.1002/adfm.201702295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1963974580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963974580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4235-6eef3ad95128de64686b7c7c76acf54a928034acecb52b8150c293029717fdcb3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKdXzwHPnUnapo23Mt0UJhM6wVtJ09R1tE1NUrQ3P4Kf0U9iymQe5R3eC_z_v5f3B-ASoxlGiFzzomxmBOEIEcLCIzDBFFPPRyQ-Psz45RScGbNDThb5wQTYVLWV4LZS7ffnV2JMZawsYDq0divdA6oSLnldV30D1x9VIWHam062xhkMXEhue121r3CjeQdTy62ESW6U7kbiDdxIY0fE01ZZJbaycXg9nIOTktdGXvz2KXhe3G3m995qvXyYJytPBMQPPSpl6fOChZjEhaQBjWkeCVeUizIMOCMx8gMupMhDksc4RIIwdy-LcFQWIven4GrP7bR6691Xsp3qdetWZphRn0VB6AhTMNurhFbGaFlmna4arocMo2xMNhuTzQ7JOgPbG96rWg7_qLPkdvH45_0B0wmAEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963974580</pqid></control><display><type>article</type><title>Sonication‐Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Syed, Nitu ; Zavabeti, Ali ; Mohiuddin, Md ; Zhang, Baoyue ; Wang, Yichao ; Datta, Robi S. ; Atkin, Paul ; Carey, Benjamin J. ; Tan, Cheng ; van Embden, Joel ; Chesman, Anthony S. R. ; Ou, Jian Zhen ; Daeneke, Torben ; Kalantar‐zadeh, Kourosh</creator><creatorcontrib>Syed, Nitu ; Zavabeti, Ali ; Mohiuddin, Md ; Zhang, Baoyue ; Wang, Yichao ; Datta, Robi S. ; Atkin, Paul ; Carey, Benjamin J. ; Tan, Cheng ; van Embden, Joel ; Chesman, Anthony S. R. ; Ou, Jian Zhen ; Daeneke, Torben ; Kalantar‐zadeh, Kourosh</creatorcontrib><description>Gallium is a near room temperature liquid metal with extraordinary properties that partly originate from the self‐limiting oxide layer formed on its surface. Taking advantage of the surface gallium oxide (Ga2O3), this work introduces a novel technique to synthesize gallium oxide nanoflakes at high yield by harvesting the self‐limiting native surface oxide of gallium. The synthesis process follows a facile two‐step method comprising liquid gallium metal sonication in DI water and subsequent annealing. In order to explore the functionalities of the product, the obtained hexagonal α‐Ga2O3 nanoflakes are used as a photocatalytic material to decompose organic model dyes. Excellent photocatalytic activity is observed under solar light irradiation. To elucidate the origin of these enhanced catalytic properties, the electronic band structure of the synthesized α‐Ga2O3 is carefully assessed. Consequently, this excellent photocatalytic performance is associated with an energy bandgap reduction, due to the presence of trap states, which are located at ≈1.65 eV under the conduction band minimum. This work presents a novel route for synthesizing oxide nanostructures that can be extended to other low melting temperature metals and their alloys, with great prospects for scaling up and high yield synthesis.
Sonication‐assisted route employed on liquid metal gallium is presented as a new route for synthesizing gallium oxide (Ga2O3) nanoflakes. The suspension of Ga2O3 is used for dye degradation, showing a remarkable efficiency, which is ascribed to the presence of trap bands.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201702295</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Band structure of solids ; Catalysis ; Catalytic activity ; Chemical synthesis ; Conduction bands ; Constraining ; Gallium ; Gallium oxides ; Light irradiation ; liquid metals ; Materials science ; metal oxides ; Photocatalysis ; Photochemistry ; sonication ; trap states</subject><ispartof>Advanced functional materials, 2017-11, Vol.27 (43), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4235-6eef3ad95128de64686b7c7c76acf54a928034acecb52b8150c293029717fdcb3</citedby><cites>FETCH-LOGICAL-c4235-6eef3ad95128de64686b7c7c76acf54a928034acecb52b8150c293029717fdcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201702295$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201702295$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Mohiuddin, Md</creatorcontrib><creatorcontrib>Zhang, Baoyue</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><creatorcontrib>Datta, Robi S.</creatorcontrib><creatorcontrib>Atkin, Paul</creatorcontrib><creatorcontrib>Carey, Benjamin J.</creatorcontrib><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>van Embden, Joel</creatorcontrib><creatorcontrib>Chesman, Anthony S. R.</creatorcontrib><creatorcontrib>Ou, Jian Zhen</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>Kalantar‐zadeh, Kourosh</creatorcontrib><title>Sonication‐Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry</title><title>Advanced functional materials</title><description>Gallium is a near room temperature liquid metal with extraordinary properties that partly originate from the self‐limiting oxide layer formed on its surface. Taking advantage of the surface gallium oxide (Ga2O3), this work introduces a novel technique to synthesize gallium oxide nanoflakes at high yield by harvesting the self‐limiting native surface oxide of gallium. The synthesis process follows a facile two‐step method comprising liquid gallium metal sonication in DI water and subsequent annealing. In order to explore the functionalities of the product, the obtained hexagonal α‐Ga2O3 nanoflakes are used as a photocatalytic material to decompose organic model dyes. Excellent photocatalytic activity is observed under solar light irradiation. To elucidate the origin of these enhanced catalytic properties, the electronic band structure of the synthesized α‐Ga2O3 is carefully assessed. Consequently, this excellent photocatalytic performance is associated with an energy bandgap reduction, due to the presence of trap states, which are located at ≈1.65 eV under the conduction band minimum. This work presents a novel route for synthesizing oxide nanostructures that can be extended to other low melting temperature metals and their alloys, with great prospects for scaling up and high yield synthesis.
Sonication‐assisted route employed on liquid metal gallium is presented as a new route for synthesizing gallium oxide (Ga2O3) nanoflakes. The suspension of Ga2O3 is used for dye degradation, showing a remarkable efficiency, which is ascribed to the presence of trap bands.</description><subject>Band structure of solids</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Conduction bands</subject><subject>Constraining</subject><subject>Gallium</subject><subject>Gallium oxides</subject><subject>Light irradiation</subject><subject>liquid metals</subject><subject>Materials science</subject><subject>metal oxides</subject><subject>Photocatalysis</subject><subject>Photochemistry</subject><subject>sonication</subject><subject>trap states</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4MoOKdXzwHPnUnapo23Mt0UJhM6wVtJ09R1tE1NUrQ3P4Kf0U9iymQe5R3eC_z_v5f3B-ASoxlGiFzzomxmBOEIEcLCIzDBFFPPRyQ-Psz45RScGbNDThb5wQTYVLWV4LZS7ffnV2JMZawsYDq0divdA6oSLnldV30D1x9VIWHam062xhkMXEhue121r3CjeQdTy62ESW6U7kbiDdxIY0fE01ZZJbaycXg9nIOTktdGXvz2KXhe3G3m995qvXyYJytPBMQPPSpl6fOChZjEhaQBjWkeCVeUizIMOCMx8gMupMhDksc4RIIwdy-LcFQWIven4GrP7bR6691Xsp3qdetWZphRn0VB6AhTMNurhFbGaFlmna4arocMo2xMNhuTzQ7JOgPbG96rWg7_qLPkdvH45_0B0wmAEA</recordid><startdate>20171117</startdate><enddate>20171117</enddate><creator>Syed, Nitu</creator><creator>Zavabeti, Ali</creator><creator>Mohiuddin, Md</creator><creator>Zhang, Baoyue</creator><creator>Wang, Yichao</creator><creator>Datta, Robi S.</creator><creator>Atkin, Paul</creator><creator>Carey, Benjamin J.</creator><creator>Tan, Cheng</creator><creator>van Embden, Joel</creator><creator>Chesman, Anthony S. R.</creator><creator>Ou, Jian Zhen</creator><creator>Daeneke, Torben</creator><creator>Kalantar‐zadeh, Kourosh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20171117</creationdate><title>Sonication‐Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry</title><author>Syed, Nitu ; Zavabeti, Ali ; Mohiuddin, Md ; Zhang, Baoyue ; Wang, Yichao ; Datta, Robi S. ; Atkin, Paul ; Carey, Benjamin J. ; Tan, Cheng ; van Embden, Joel ; Chesman, Anthony S. R. ; Ou, Jian Zhen ; Daeneke, Torben ; Kalantar‐zadeh, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4235-6eef3ad95128de64686b7c7c76acf54a928034acecb52b8150c293029717fdcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Band structure of solids</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Conduction bands</topic><topic>Constraining</topic><topic>Gallium</topic><topic>Gallium oxides</topic><topic>Light irradiation</topic><topic>liquid metals</topic><topic>Materials science</topic><topic>metal oxides</topic><topic>Photocatalysis</topic><topic>Photochemistry</topic><topic>sonication</topic><topic>trap states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Mohiuddin, Md</creatorcontrib><creatorcontrib>Zhang, Baoyue</creatorcontrib><creatorcontrib>Wang, Yichao</creatorcontrib><creatorcontrib>Datta, Robi S.</creatorcontrib><creatorcontrib>Atkin, Paul</creatorcontrib><creatorcontrib>Carey, Benjamin J.</creatorcontrib><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>van Embden, Joel</creatorcontrib><creatorcontrib>Chesman, Anthony S. R.</creatorcontrib><creatorcontrib>Ou, Jian Zhen</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>Kalantar‐zadeh, Kourosh</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syed, Nitu</au><au>Zavabeti, Ali</au><au>Mohiuddin, Md</au><au>Zhang, Baoyue</au><au>Wang, Yichao</au><au>Datta, Robi S.</au><au>Atkin, Paul</au><au>Carey, Benjamin J.</au><au>Tan, Cheng</au><au>van Embden, Joel</au><au>Chesman, Anthony S. R.</au><au>Ou, Jian Zhen</au><au>Daeneke, Torben</au><au>Kalantar‐zadeh, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sonication‐Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry</atitle><jtitle>Advanced functional materials</jtitle><date>2017-11-17</date><risdate>2017</risdate><volume>27</volume><issue>43</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Gallium is a near room temperature liquid metal with extraordinary properties that partly originate from the self‐limiting oxide layer formed on its surface. Taking advantage of the surface gallium oxide (Ga2O3), this work introduces a novel technique to synthesize gallium oxide nanoflakes at high yield by harvesting the self‐limiting native surface oxide of gallium. The synthesis process follows a facile two‐step method comprising liquid gallium metal sonication in DI water and subsequent annealing. In order to explore the functionalities of the product, the obtained hexagonal α‐Ga2O3 nanoflakes are used as a photocatalytic material to decompose organic model dyes. Excellent photocatalytic activity is observed under solar light irradiation. To elucidate the origin of these enhanced catalytic properties, the electronic band structure of the synthesized α‐Ga2O3 is carefully assessed. Consequently, this excellent photocatalytic performance is associated with an energy bandgap reduction, due to the presence of trap states, which are located at ≈1.65 eV under the conduction band minimum. This work presents a novel route for synthesizing oxide nanostructures that can be extended to other low melting temperature metals and their alloys, with great prospects for scaling up and high yield synthesis.
Sonication‐assisted route employed on liquid metal gallium is presented as a new route for synthesizing gallium oxide (Ga2O3) nanoflakes. The suspension of Ga2O3 is used for dye degradation, showing a remarkable efficiency, which is ascribed to the presence of trap bands.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201702295</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-11, Vol.27 (43), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_1963974580 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Band structure of solids Catalysis Catalytic activity Chemical synthesis Conduction bands Constraining Gallium Gallium oxides Light irradiation liquid metals Materials science metal oxides Photocatalysis Photochemistry sonication trap states |
title | Sonication‐Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sonication%E2%80%90Assisted%20Synthesis%20of%20Gallium%20Oxide%20Suspensions%20Featuring%20Trap%20State%20Absorption:%20Test%20of%20Photochemistry&rft.jtitle=Advanced%20functional%20materials&rft.au=Syed,%20Nitu&rft.date=2017-11-17&rft.volume=27&rft.issue=43&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201702295&rft_dat=%3Cproquest_cross%3E1963974580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963974580&rft_id=info:pmid/&rfr_iscdi=true |