Ganglioside GM1 increases line tension at raft boundary in model membranes
Gangliosides are significant participants in suppression of immune system during tumor processes. It was shown that they can induce apoptosis of T-lymphocytes in a raft-dependent manner. Fluorescence confocal microscopy was used to study distribution and influence of ganglioside GM1 on raft properti...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow). Supplement series A, Membrane and cell biology Membrane and cell biology, 2009-06, Vol.3 (2), p.216-222 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gangliosides are significant participants in suppression of immune system during tumor processes. It was shown that they can induce apoptosis of T-lymphocytes in a raft-dependent manner. Fluorescence confocal microscopy was used to study distribution and influence of ganglioside GM1 on raft properties in giant unilamellar vesicles. Both raft and non-raft phase markers were utilized. No visible phase separation was observed without GM1 unless lateral tension was applied to the membrane. At 2 mol % of GM1 large domains appeared indicating macroscopic phase separation. Increase of GM1 content to 5 mol % resulted in shape transformation of the domains consistent with growth of line tension at the domain boundary. At 10 mol % of GM1 almost all domains were pinched out from vesicles, forming their own homogeneous liposomes. Estimations showed that the change of the GM1 content from 2 to 5–10 mol % resulted in a several-fold increase of line tension. This finding provides a possible mechanism of apoptosis induction by GM1. Incorporation of GM1 into a membrane leads to an increase of the line tension. This results in a growth of the average size of rafts due to coalescence or merger of small domains. Thus, necessary proteins can find themselves in one common raft and start the corresponding cascade of reactions. |
---|---|
ISSN: | 1990-7478 1990-7494 |
DOI: | 10.1134/S1990747809020159 |