Exact finite volume particle method with spherical-support kernels
The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2017-04, Vol.317, p.102-127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | |
container_start_page | 102 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 317 |
creator | Jahanbakhsh, E. Maertens, A. Quinlan, N.J. Vessaz, C. Avellan, F. |
description | The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate.
•Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle. |
doi_str_mv | 10.1016/j.cma.2016.12.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1963342249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251630367X</els_id><sourcerecordid>1963342249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4twSJ23aihNM40OaxAXOUeokWkrXliQd8O_pNM74Yh_ex5YfQq6BZkBB3LYZ7lTG5jEDllEoTsgCqrJOGfDqlCwozYu0rFhxTi5CaOlcFbAFeVh_K4yJdb2LJtkP3bQzyah8dNiZZGfidtDJl4vbJIxb4x2qLg3TOA4-Jh_G96YLl-TMqi6Yq7--JO-P67fVc7p5fXpZ3W9S5KyIKUduuUVACoxbUzFRaFXnWKvKKg62FBqRN1o0tKFCC0AlypILrZqGNZjzJbk57h398DmZEGU7TL6fT0qoBec5Y3k9p-CYQj-E4I2Vo3c75X8kUHlQJVs5q5IHVRKYnFXNzN2Rmb8xe2e8DOhMj0Y7bzBKPbh_6F8IhXIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963342249</pqid></control><display><type>article</type><title>Exact finite volume particle method with spherical-support kernels</title><source>Elsevier ScienceDirect Journals</source><creator>Jahanbakhsh, E. ; Maertens, A. ; Quinlan, N.J. ; Vessaz, C. ; Avellan, F.</creator><creatorcontrib>Jahanbakhsh, E. ; Maertens, A. ; Quinlan, N.J. ; Vessaz, C. ; Avellan, F.</creatorcontrib><description>The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate.
•Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.12.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Arbitrary Lagrangian–Eulerian (ALE) ; Computer simulation ; Eulers equations ; Finite element method ; Finite volume method ; Finite Volume Particle Method (FVPM) ; Kernels ; Meshless methods ; Particle physics ; Robustness (mathematics) ; Spherical-support kernel ; Surface partitioning ; Test procedures</subject><ispartof>Computer methods in applied mechanics and engineering, 2017-04, Vol.317, p.102-127</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</citedby><cites>FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004578251630367X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jahanbakhsh, E.</creatorcontrib><creatorcontrib>Maertens, A.</creatorcontrib><creatorcontrib>Quinlan, N.J.</creatorcontrib><creatorcontrib>Vessaz, C.</creatorcontrib><creatorcontrib>Avellan, F.</creatorcontrib><title>Exact finite volume particle method with spherical-support kernels</title><title>Computer methods in applied mechanics and engineering</title><description>The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate.
•Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle.</description><subject>Algorithms</subject><subject>Arbitrary Lagrangian–Eulerian (ALE)</subject><subject>Computer simulation</subject><subject>Eulers equations</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Finite Volume Particle Method (FVPM)</subject><subject>Kernels</subject><subject>Meshless methods</subject><subject>Particle physics</subject><subject>Robustness (mathematics)</subject><subject>Spherical-support kernel</subject><subject>Surface partitioning</subject><subject>Test procedures</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4twSJ23aihNM40OaxAXOUeokWkrXliQd8O_pNM74Yh_ex5YfQq6BZkBB3LYZ7lTG5jEDllEoTsgCqrJOGfDqlCwozYu0rFhxTi5CaOlcFbAFeVh_K4yJdb2LJtkP3bQzyah8dNiZZGfidtDJl4vbJIxb4x2qLg3TOA4-Jh_G96YLl-TMqi6Yq7--JO-P67fVc7p5fXpZ3W9S5KyIKUduuUVACoxbUzFRaFXnWKvKKg62FBqRN1o0tKFCC0AlypILrZqGNZjzJbk57h398DmZEGU7TL6fT0qoBec5Y3k9p-CYQj-E4I2Vo3c75X8kUHlQJVs5q5IHVRKYnFXNzN2Rmb8xe2e8DOhMj0Y7bzBKPbh_6F8IhXIf</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Jahanbakhsh, E.</creator><creator>Maertens, A.</creator><creator>Quinlan, N.J.</creator><creator>Vessaz, C.</creator><creator>Avellan, F.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170415</creationdate><title>Exact finite volume particle method with spherical-support kernels</title><author>Jahanbakhsh, E. ; Maertens, A. ; Quinlan, N.J. ; Vessaz, C. ; Avellan, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Arbitrary Lagrangian–Eulerian (ALE)</topic><topic>Computer simulation</topic><topic>Eulers equations</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Finite Volume Particle Method (FVPM)</topic><topic>Kernels</topic><topic>Meshless methods</topic><topic>Particle physics</topic><topic>Robustness (mathematics)</topic><topic>Spherical-support kernel</topic><topic>Surface partitioning</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahanbakhsh, E.</creatorcontrib><creatorcontrib>Maertens, A.</creatorcontrib><creatorcontrib>Quinlan, N.J.</creatorcontrib><creatorcontrib>Vessaz, C.</creatorcontrib><creatorcontrib>Avellan, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahanbakhsh, E.</au><au>Maertens, A.</au><au>Quinlan, N.J.</au><au>Vessaz, C.</au><au>Avellan, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact finite volume particle method with spherical-support kernels</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>317</volume><spage>102</spage><epage>127</epage><pages>102-127</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate.
•Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.12.015</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2017-04, Vol.317, p.102-127 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_1963342249 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Arbitrary Lagrangian–Eulerian (ALE) Computer simulation Eulers equations Finite element method Finite volume method Finite Volume Particle Method (FVPM) Kernels Meshless methods Particle physics Robustness (mathematics) Spherical-support kernel Surface partitioning Test procedures |
title | Exact finite volume particle method with spherical-support kernels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20finite%20volume%20particle%20method%20with%20spherical-support%20kernels&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Jahanbakhsh,%20E.&rft.date=2017-04-15&rft.volume=317&rft.spage=102&rft.epage=127&rft.pages=102-127&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.12.015&rft_dat=%3Cproquest_cross%3E1963342249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963342249&rft_id=info:pmid/&rft_els_id=S004578251630367X&rfr_iscdi=true |