Exact finite volume particle method with spherical-support kernels

The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2017-04, Vol.317, p.102-127
Hauptverfasser: Jahanbakhsh, E., Maertens, A., Quinlan, N.J., Vessaz, C., Avellan, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue
container_start_page 102
container_title Computer methods in applied mechanics and engineering
container_volume 317
creator Jahanbakhsh, E.
Maertens, A.
Quinlan, N.J.
Vessaz, C.
Avellan, F.
description The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate. •Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle.
doi_str_mv 10.1016/j.cma.2016.12.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1963342249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251630367X</els_id><sourcerecordid>1963342249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4twSJ23aihNM40OaxAXOUeokWkrXliQd8O_pNM74Yh_ex5YfQq6BZkBB3LYZ7lTG5jEDllEoTsgCqrJOGfDqlCwozYu0rFhxTi5CaOlcFbAFeVh_K4yJdb2LJtkP3bQzyah8dNiZZGfidtDJl4vbJIxb4x2qLg3TOA4-Jh_G96YLl-TMqi6Yq7--JO-P67fVc7p5fXpZ3W9S5KyIKUduuUVACoxbUzFRaFXnWKvKKg62FBqRN1o0tKFCC0AlypILrZqGNZjzJbk57h398DmZEGU7TL6fT0qoBec5Y3k9p-CYQj-E4I2Vo3c75X8kUHlQJVs5q5IHVRKYnFXNzN2Rmb8xe2e8DOhMj0Y7bzBKPbh_6F8IhXIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963342249</pqid></control><display><type>article</type><title>Exact finite volume particle method with spherical-support kernels</title><source>Elsevier ScienceDirect Journals</source><creator>Jahanbakhsh, E. ; Maertens, A. ; Quinlan, N.J. ; Vessaz, C. ; Avellan, F.</creator><creatorcontrib>Jahanbakhsh, E. ; Maertens, A. ; Quinlan, N.J. ; Vessaz, C. ; Avellan, F.</creatorcontrib><description>The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate. •Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.12.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Arbitrary Lagrangian–Eulerian (ALE) ; Computer simulation ; Eulers equations ; Finite element method ; Finite volume method ; Finite Volume Particle Method (FVPM) ; Kernels ; Meshless methods ; Particle physics ; Robustness (mathematics) ; Spherical-support kernel ; Surface partitioning ; Test procedures</subject><ispartof>Computer methods in applied mechanics and engineering, 2017-04, Vol.317, p.102-127</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</citedby><cites>FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004578251630367X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jahanbakhsh, E.</creatorcontrib><creatorcontrib>Maertens, A.</creatorcontrib><creatorcontrib>Quinlan, N.J.</creatorcontrib><creatorcontrib>Vessaz, C.</creatorcontrib><creatorcontrib>Avellan, F.</creatorcontrib><title>Exact finite volume particle method with spherical-support kernels</title><title>Computer methods in applied mechanics and engineering</title><description>The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate. •Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle.</description><subject>Algorithms</subject><subject>Arbitrary Lagrangian–Eulerian (ALE)</subject><subject>Computer simulation</subject><subject>Eulers equations</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Finite Volume Particle Method (FVPM)</subject><subject>Kernels</subject><subject>Meshless methods</subject><subject>Particle physics</subject><subject>Robustness (mathematics)</subject><subject>Spherical-support kernel</subject><subject>Surface partitioning</subject><subject>Test procedures</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4twSJ23aihNM40OaxAXOUeokWkrXliQd8O_pNM74Yh_ex5YfQq6BZkBB3LYZ7lTG5jEDllEoTsgCqrJOGfDqlCwozYu0rFhxTi5CaOlcFbAFeVh_K4yJdb2LJtkP3bQzyah8dNiZZGfidtDJl4vbJIxb4x2qLg3TOA4-Jh_G96YLl-TMqi6Yq7--JO-P67fVc7p5fXpZ3W9S5KyIKUduuUVACoxbUzFRaFXnWKvKKg62FBqRN1o0tKFCC0AlypILrZqGNZjzJbk57h398DmZEGU7TL6fT0qoBec5Y3k9p-CYQj-E4I2Vo3c75X8kUHlQJVs5q5IHVRKYnFXNzN2Rmb8xe2e8DOhMj0Y7bzBKPbh_6F8IhXIf</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Jahanbakhsh, E.</creator><creator>Maertens, A.</creator><creator>Quinlan, N.J.</creator><creator>Vessaz, C.</creator><creator>Avellan, F.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170415</creationdate><title>Exact finite volume particle method with spherical-support kernels</title><author>Jahanbakhsh, E. ; Maertens, A. ; Quinlan, N.J. ; Vessaz, C. ; Avellan, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3c3f3fc1c0123fe8265da94c9a8fa31f76dcc3bd6b0b06d61ca67736dabb2bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Arbitrary Lagrangian–Eulerian (ALE)</topic><topic>Computer simulation</topic><topic>Eulers equations</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Finite Volume Particle Method (FVPM)</topic><topic>Kernels</topic><topic>Meshless methods</topic><topic>Particle physics</topic><topic>Robustness (mathematics)</topic><topic>Spherical-support kernel</topic><topic>Surface partitioning</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahanbakhsh, E.</creatorcontrib><creatorcontrib>Maertens, A.</creatorcontrib><creatorcontrib>Quinlan, N.J.</creatorcontrib><creatorcontrib>Vessaz, C.</creatorcontrib><creatorcontrib>Avellan, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahanbakhsh, E.</au><au>Maertens, A.</au><au>Quinlan, N.J.</au><au>Vessaz, C.</au><au>Avellan, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact finite volume particle method with spherical-support kernels</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>317</volume><spage>102</spage><epage>127</epage><pages>102-127</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>The Finite Volume Particle Method (FVPM) is a meshless method for simulating fluid flows which includes many of the desirable features of mesh-based finite volume methods. In this paper, we develop a new 3-D FVPM formulation that features spherical kernel supports. The formulation is based on exact integration of interaction vectors constructed from top-hat kernels. The exact integration is obtained by an innovative surface partitioning algorithm as well as precise area computation of the sphere subsurfaces. Spherical-support FVPM improves the recently developed cubic-support version in two main aspects: spherical kernels have no directionality and result in smooth interactions between particles, leading to an improved method. We present three test cases that illustrate the improved accuracy and robustness brought by the spherical kernel. Although computations are 1.5 times slower on spherical support than cubic support, the cost is more than compensated by lower error with a higher convergence rate. •Presenting a new 3-D FVPM that features spherical-supported top-hat kernel.•Introducing an efficient algorithm for sphere surface partitioning using set operations.•Introducing an exact method for computing the area vector and surface area of the spherical sub-surfaces.•Introducing an exact method for computing the volume of particle.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.12.015</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2017-04, Vol.317, p.102-127
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_1963342249
source Elsevier ScienceDirect Journals
subjects Algorithms
Arbitrary Lagrangian–Eulerian (ALE)
Computer simulation
Eulers equations
Finite element method
Finite volume method
Finite Volume Particle Method (FVPM)
Kernels
Meshless methods
Particle physics
Robustness (mathematics)
Spherical-support kernel
Surface partitioning
Test procedures
title Exact finite volume particle method with spherical-support kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20finite%20volume%20particle%20method%20with%20spherical-support%20kernels&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Jahanbakhsh,%20E.&rft.date=2017-04-15&rft.volume=317&rft.spage=102&rft.epage=127&rft.pages=102-127&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.12.015&rft_dat=%3Cproquest_cross%3E1963342249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963342249&rft_id=info:pmid/&rft_els_id=S004578251630367X&rfr_iscdi=true