Assessment of implementing satellite-derived land cover data in the Eta Model

One of the challenges in land surface modeling involves specifying accurately the initial state of the land surface. Most efforts have focused upon using a multiyear climatology to specify the fractional coverage of vegetation. For example, the National Centers for Environmental Prediction (NCEP) Et...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2003-06, Vol.18 (3), p.404-416
Hauptverfasser: KURKOWSKI, Nicole P, STENSRUD, David J, BALDWIN, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 3
container_start_page 404
container_title Weather and forecasting
container_volume 18
creator KURKOWSKI, Nicole P
STENSRUD, David J
BALDWIN, Michael E
description One of the challenges in land surface modeling involves specifying accurately the initial state of the land surface. Most efforts have focused upon using a multiyear climatology to specify the fractional coverage of vegetation. For example, the National Centers for Environmental Prediction (NCEP) Eta Model uses a 5-yr satellite climatology of monthly normalized difference vegetation index (NDVI) values to define the fractional vegetation coverage, or greenness, at 1/8[degrees] (approximately 14 km) resolution. These data are valid on the 15th of every month and are interpolated temporally for daily runs. Yet vegetation characteristics change from year to year and are influenced by short-lived events such as fires, crop harvesting, droughts, floods, and hailstorms that are missed using a climatological database. To explore the importance of the initial state vegetation characteristics on operational numerical weather forecasts, the response of the Eta Model to initializing fractional vegetation coverage directly from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) data is investigated. Numerical forecasts of the Eta Model, using both climatological and near-real-time values of fractional vegetation coverage, are compared with observations to examine the potential importance of variations in vegetation to forecasts of 2-m temperatures and dewpoint temperatures from 0 to 48 h for selected days during the 2001 growing season. Results show that use of the near-real-time vegetation fraction data improves the forecasts of both the 2-m temperature and dewpoint temperature for much of the growing season, highlighting the need for this type of information to be included in operational forecast models. [PUBLICATION ABSTRACT]
doi_str_mv 10.1175/1520-0434(2003)18<404:AOISDL>2.0.CO;2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_196333420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>357806471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-3cdf43670fe853a5670a6618a889e8700ce830219f46292d982c63f15948de7c3</originalsourceid><addsrcrecordid>eNpFkF1Lw0AQRRdRsFb_wyII-pA6-5VsVIQSqxZa8qA-L8tmoilpUnfTgv_ehBZ9mjtwuBcOIRGDCWOJumWKQwRSyGsOIG6YfpAg76b5_O1p8cgnMMnye35ERn_cMRmB1jzSTMWn5CyEFQBwxdMRWU5DwBDW2HS0LWm13tQ4PFXzSYPtsK6rDqMCfbXDgta2Kahrd-hpYTtLq4Z2X0hnfVy2Bdbn5KS0dcCLwx2Tj-fZe_YaLfKXeTZdRE4I1UXCFaUUcQIlaiWs6pONY6at1inqBMChFsBZWsqYp7xINXexKJlKpS4wcWJMLve9G99-bzF0ZtVufdNPGpbGQgjJoYdme8j5NgSPpdn4am39j2FgBpFmEGQGQWYQaZg2vUizF2m4AZPlhvc9V4cxG5ytS28bV4X_MplKpVksfgEQq3S_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196333420</pqid></control><display><type>article</type><title>Assessment of implementing satellite-derived land cover data in the Eta Model</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>KURKOWSKI, Nicole P ; STENSRUD, David J ; BALDWIN, Michael E</creator><creatorcontrib>KURKOWSKI, Nicole P ; STENSRUD, David J ; BALDWIN, Michael E</creatorcontrib><description>One of the challenges in land surface modeling involves specifying accurately the initial state of the land surface. Most efforts have focused upon using a multiyear climatology to specify the fractional coverage of vegetation. For example, the National Centers for Environmental Prediction (NCEP) Eta Model uses a 5-yr satellite climatology of monthly normalized difference vegetation index (NDVI) values to define the fractional vegetation coverage, or greenness, at 1/8[degrees] (approximately 14 km) resolution. These data are valid on the 15th of every month and are interpolated temporally for daily runs. Yet vegetation characteristics change from year to year and are influenced by short-lived events such as fires, crop harvesting, droughts, floods, and hailstorms that are missed using a climatological database. To explore the importance of the initial state vegetation characteristics on operational numerical weather forecasts, the response of the Eta Model to initializing fractional vegetation coverage directly from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) data is investigated. Numerical forecasts of the Eta Model, using both climatological and near-real-time values of fractional vegetation coverage, are compared with observations to examine the potential importance of variations in vegetation to forecasts of 2-m temperatures and dewpoint temperatures from 0 to 48 h for selected days during the 2001 growing season. Results show that use of the near-real-time vegetation fraction data improves the forecasts of both the 2-m temperature and dewpoint temperature for much of the growing season, highlighting the need for this type of information to be included in operational forecast models. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/1520-0434(2003)18&lt;404:AOISDL&gt;2.0.CO;2</identifier><identifier>CODEN: WEFOE3</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Climate ; Climatology ; Drought ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Flowers &amp; plants ; Geophysics. Techniques, methods, instrumentation and models ; Growing season ; Meteorological satellites ; Vegetation ; Weather ; Weather forecasting</subject><ispartof>Weather and forecasting, 2003-06, Vol.18 (3), p.404-416</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jun 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-3cdf43670fe853a5670a6618a889e8700ce830219f46292d982c63f15948de7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14945816$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KURKOWSKI, Nicole P</creatorcontrib><creatorcontrib>STENSRUD, David J</creatorcontrib><creatorcontrib>BALDWIN, Michael E</creatorcontrib><title>Assessment of implementing satellite-derived land cover data in the Eta Model</title><title>Weather and forecasting</title><description>One of the challenges in land surface modeling involves specifying accurately the initial state of the land surface. Most efforts have focused upon using a multiyear climatology to specify the fractional coverage of vegetation. For example, the National Centers for Environmental Prediction (NCEP) Eta Model uses a 5-yr satellite climatology of monthly normalized difference vegetation index (NDVI) values to define the fractional vegetation coverage, or greenness, at 1/8[degrees] (approximately 14 km) resolution. These data are valid on the 15th of every month and are interpolated temporally for daily runs. Yet vegetation characteristics change from year to year and are influenced by short-lived events such as fires, crop harvesting, droughts, floods, and hailstorms that are missed using a climatological database. To explore the importance of the initial state vegetation characteristics on operational numerical weather forecasts, the response of the Eta Model to initializing fractional vegetation coverage directly from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) data is investigated. Numerical forecasts of the Eta Model, using both climatological and near-real-time values of fractional vegetation coverage, are compared with observations to examine the potential importance of variations in vegetation to forecasts of 2-m temperatures and dewpoint temperatures from 0 to 48 h for selected days during the 2001 growing season. Results show that use of the near-real-time vegetation fraction data improves the forecasts of both the 2-m temperature and dewpoint temperature for much of the growing season, highlighting the need for this type of information to be included in operational forecast models. [PUBLICATION ABSTRACT]</description><subject>Climate</subject><subject>Climatology</subject><subject>Drought</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flowers &amp; plants</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Growing season</subject><subject>Meteorological satellites</subject><subject>Vegetation</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkF1Lw0AQRRdRsFb_wyII-pA6-5VsVIQSqxZa8qA-L8tmoilpUnfTgv_ehBZ9mjtwuBcOIRGDCWOJumWKQwRSyGsOIG6YfpAg76b5_O1p8cgnMMnye35ERn_cMRmB1jzSTMWn5CyEFQBwxdMRWU5DwBDW2HS0LWm13tQ4PFXzSYPtsK6rDqMCfbXDgta2Kahrd-hpYTtLq4Z2X0hnfVy2Bdbn5KS0dcCLwx2Tj-fZe_YaLfKXeTZdRE4I1UXCFaUUcQIlaiWs6pONY6at1inqBMChFsBZWsqYp7xINXexKJlKpS4wcWJMLve9G99-bzF0ZtVufdNPGpbGQgjJoYdme8j5NgSPpdn4am39j2FgBpFmEGQGQWYQaZg2vUizF2m4AZPlhvc9V4cxG5ytS28bV4X_MplKpVksfgEQq3S_</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>KURKOWSKI, Nicole P</creator><creator>STENSRUD, David J</creator><creator>BALDWIN, Michael E</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7RQ</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20030601</creationdate><title>Assessment of implementing satellite-derived land cover data in the Eta Model</title><author>KURKOWSKI, Nicole P ; STENSRUD, David J ; BALDWIN, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-3cdf43670fe853a5670a6618a889e8700ce830219f46292d982c63f15948de7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Climate</topic><topic>Climatology</topic><topic>Drought</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flowers &amp; plants</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Growing season</topic><topic>Meteorological satellites</topic><topic>Vegetation</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KURKOWSKI, Nicole P</creatorcontrib><creatorcontrib>STENSRUD, David J</creatorcontrib><creatorcontrib>BALDWIN, Michael E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Career &amp; Technical Education Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KURKOWSKI, Nicole P</au><au>STENSRUD, David J</au><au>BALDWIN, Michael E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of implementing satellite-derived land cover data in the Eta Model</atitle><jtitle>Weather and forecasting</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>18</volume><issue>3</issue><spage>404</spage><epage>416</epage><pages>404-416</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><coden>WEFOE3</coden><abstract>One of the challenges in land surface modeling involves specifying accurately the initial state of the land surface. Most efforts have focused upon using a multiyear climatology to specify the fractional coverage of vegetation. For example, the National Centers for Environmental Prediction (NCEP) Eta Model uses a 5-yr satellite climatology of monthly normalized difference vegetation index (NDVI) values to define the fractional vegetation coverage, or greenness, at 1/8[degrees] (approximately 14 km) resolution. These data are valid on the 15th of every month and are interpolated temporally for daily runs. Yet vegetation characteristics change from year to year and are influenced by short-lived events such as fires, crop harvesting, droughts, floods, and hailstorms that are missed using a climatological database. To explore the importance of the initial state vegetation characteristics on operational numerical weather forecasts, the response of the Eta Model to initializing fractional vegetation coverage directly from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) data is investigated. Numerical forecasts of the Eta Model, using both climatological and near-real-time values of fractional vegetation coverage, are compared with observations to examine the potential importance of variations in vegetation to forecasts of 2-m temperatures and dewpoint temperatures from 0 to 48 h for selected days during the 2001 growing season. Results show that use of the near-real-time vegetation fraction data improves the forecasts of both the 2-m temperature and dewpoint temperature for much of the growing season, highlighting the need for this type of information to be included in operational forecast models. [PUBLICATION ABSTRACT]</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0434(2003)18&lt;404:AOISDL&gt;2.0.CO;2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0882-8156
ispartof Weather and forecasting, 2003-06, Vol.18 (3), p.404-416
issn 0882-8156
1520-0434
language eng
recordid cdi_proquest_journals_196333420
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Climate
Climatology
Drought
Earth, ocean, space
Exact sciences and technology
External geophysics
Flowers & plants
Geophysics. Techniques, methods, instrumentation and models
Growing season
Meteorological satellites
Vegetation
Weather
Weather forecasting
title Assessment of implementing satellite-derived land cover data in the Eta Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20implementing%20satellite-derived%20land%20cover%20data%20in%20the%20Eta%20Model&rft.jtitle=Weather%20and%20forecasting&rft.au=KURKOWSKI,%20Nicole%20P&rft.date=2003-06-01&rft.volume=18&rft.issue=3&rft.spage=404&rft.epage=416&rft.pages=404-416&rft.issn=0882-8156&rft.eissn=1520-0434&rft.coden=WEFOE3&rft_id=info:doi/10.1175/1520-0434(2003)18%3C404:AOISDL%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E357806471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196333420&rft_id=info:pmid/&rfr_iscdi=true