Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution
Na3V2(PO4)3, with a NASICON‐type structure, is a promising cathode material for use in sodium‐ion batteries based on a two‐electron reaction and operating at 3.4 V. Herein, we report the synthesis of Na3+xV2‐xMgx(PO4)3 (x=0.1 to 0.7) for use as a cathode material in sodium‐ion batteries. In this wor...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2017-11, Vol.4 (11), p.2755-2759 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2759 |
---|---|
container_issue | 11 |
container_start_page | 2755 |
container_title | ChemElectroChem |
container_volume | 4 |
creator | Inoishi, Atsushi Yoshioka, Yuto Zhao, Liwei Kitajou, Ayuko Okada, Shigeto |
description | Na3V2(PO4)3, with a NASICON‐type structure, is a promising cathode material for use in sodium‐ion batteries based on a two‐electron reaction and operating at 3.4 V. Herein, we report the synthesis of Na3+xV2‐xMgx(PO4)3 (x=0.1 to 0.7) for use as a cathode material in sodium‐ion batteries. In this work, Na3.2V1.8Mg0.2(PO4)3 was found to exhibit a larger reversible capacity than the theoretical capacity of undoped Na3V2(PO4)3, as a result of the larger number of Na+ in the initial composition, as well as access to the V4+/V5+ redox couple. In contrast, although Mg‐rich samples such as Na3.5V1.5Mg0.5(PO4)3 showed a relatively clear plateau for the V4+/V5+ redox couple, the total discharge capacities were lower than that of the undoped Na3V2(PO4)3 because of the irreversibility in the V4+/V5+ redox region. ICP data clearly indicated that Mg2+ are stable within the NASICON structure during redox cycling and that Na+ is the charge carriers in this cathode.
Better than predicted: To improve the cathode performance of Na3V2(PO4)3 in Na‐ion batteries, Mg2+ substitutional doping for V3+ was investigated. It allows access to the V4+/V5+ redox couple and to introduce more Na+ in the initial composition. As a result, Na3+xV2‐xMgx(PO4)3 successfully produces a larger energy density than the theoretical value of Na3V2(PO4)3. |
doi_str_mv | 10.1002/celc.201700540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1963330225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963330225</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2510-c1da5a0bddb60270551e9620376a2891eb9fdb34e1c883b7766651bc47582ef83</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNRePS940UPqzG52kxwltlqIVvDjumSTSU1pk5pslPz3plSKp3kDjzfzfoxdIkwRQNxmtMmmAjAAUD6csJHASHsgUJ_-0-ds0rZrAEAEJUM9YvFiu2vqb9pS5XhZcfdJfFZRs-r5PVVt6XpeF_w5lR_i-mXp30hue_604q-dbV3pOlfW1QU7K9JNS5O_OWbv89lb_Ogly4dFfJd4K6EQvAzzVKVg89xqEAEohRRpATLQqQgjJBsVuZU-YRaG0gaB1lqhzfxAhYKKUI7Z1SF3-Piro9aZdd011XDSDAWllCCEGlzRwfVTbqg3u6bcpk1vEMwelNmDMkdQJp4l8XGTv_UWW1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963330225</pqid></control><display><type>article</type><title>Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Inoishi, Atsushi ; Yoshioka, Yuto ; Zhao, Liwei ; Kitajou, Ayuko ; Okada, Shigeto</creator><creatorcontrib>Inoishi, Atsushi ; Yoshioka, Yuto ; Zhao, Liwei ; Kitajou, Ayuko ; Okada, Shigeto</creatorcontrib><description>Na3V2(PO4)3, with a NASICON‐type structure, is a promising cathode material for use in sodium‐ion batteries based on a two‐electron reaction and operating at 3.4 V. Herein, we report the synthesis of Na3+xV2‐xMgx(PO4)3 (x=0.1 to 0.7) for use as a cathode material in sodium‐ion batteries. In this work, Na3.2V1.8Mg0.2(PO4)3 was found to exhibit a larger reversible capacity than the theoretical capacity of undoped Na3V2(PO4)3, as a result of the larger number of Na+ in the initial composition, as well as access to the V4+/V5+ redox couple. In contrast, although Mg‐rich samples such as Na3.5V1.5Mg0.5(PO4)3 showed a relatively clear plateau for the V4+/V5+ redox couple, the total discharge capacities were lower than that of the undoped Na3V2(PO4)3 because of the irreversibility in the V4+/V5+ redox region. ICP data clearly indicated that Mg2+ are stable within the NASICON structure during redox cycling and that Na+ is the charge carriers in this cathode.
Better than predicted: To improve the cathode performance of Na3V2(PO4)3 in Na‐ion batteries, Mg2+ substitutional doping for V3+ was investigated. It allows access to the V4+/V5+ redox couple and to introduce more Na+ in the initial composition. As a result, Na3+xV2‐xMgx(PO4)3 successfully produces a larger energy density than the theoretical value of Na3V2(PO4)3.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201700540</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>cathode ; Cathodes ; Chemical synthesis ; Current carriers ; Electrode materials ; energy density ; Flux density ; magnesium ; Na3V2(PO4)3 ; NASICON ; Rechargeable batteries ; Sodium-ion batteries</subject><ispartof>ChemElectroChem, 2017-11, Vol.4 (11), p.2755-2759</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201700540$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201700540$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Inoishi, Atsushi</creatorcontrib><creatorcontrib>Yoshioka, Yuto</creatorcontrib><creatorcontrib>Zhao, Liwei</creatorcontrib><creatorcontrib>Kitajou, Ayuko</creatorcontrib><creatorcontrib>Okada, Shigeto</creatorcontrib><title>Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution</title><title>ChemElectroChem</title><description>Na3V2(PO4)3, with a NASICON‐type structure, is a promising cathode material for use in sodium‐ion batteries based on a two‐electron reaction and operating at 3.4 V. Herein, we report the synthesis of Na3+xV2‐xMgx(PO4)3 (x=0.1 to 0.7) for use as a cathode material in sodium‐ion batteries. In this work, Na3.2V1.8Mg0.2(PO4)3 was found to exhibit a larger reversible capacity than the theoretical capacity of undoped Na3V2(PO4)3, as a result of the larger number of Na+ in the initial composition, as well as access to the V4+/V5+ redox couple. In contrast, although Mg‐rich samples such as Na3.5V1.5Mg0.5(PO4)3 showed a relatively clear plateau for the V4+/V5+ redox couple, the total discharge capacities were lower than that of the undoped Na3V2(PO4)3 because of the irreversibility in the V4+/V5+ redox region. ICP data clearly indicated that Mg2+ are stable within the NASICON structure during redox cycling and that Na+ is the charge carriers in this cathode.
Better than predicted: To improve the cathode performance of Na3V2(PO4)3 in Na‐ion batteries, Mg2+ substitutional doping for V3+ was investigated. It allows access to the V4+/V5+ redox couple and to introduce more Na+ in the initial composition. As a result, Na3+xV2‐xMgx(PO4)3 successfully produces a larger energy density than the theoretical value of Na3V2(PO4)3.</description><subject>cathode</subject><subject>Cathodes</subject><subject>Chemical synthesis</subject><subject>Current carriers</subject><subject>Electrode materials</subject><subject>energy density</subject><subject>Flux density</subject><subject>magnesium</subject><subject>Na3V2(PO4)3</subject><subject>NASICON</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Lw0AQxRdRsNRePS940UPqzG52kxwltlqIVvDjumSTSU1pk5pslPz3plSKp3kDjzfzfoxdIkwRQNxmtMmmAjAAUD6csJHASHsgUJ_-0-ds0rZrAEAEJUM9YvFiu2vqb9pS5XhZcfdJfFZRs-r5PVVt6XpeF_w5lR_i-mXp30hue_604q-dbV3pOlfW1QU7K9JNS5O_OWbv89lb_Ogly4dFfJd4K6EQvAzzVKVg89xqEAEohRRpATLQqQgjJBsVuZU-YRaG0gaB1lqhzfxAhYKKUI7Z1SF3-Piro9aZdd011XDSDAWllCCEGlzRwfVTbqg3u6bcpk1vEMwelNmDMkdQJp4l8XGTv_UWW1I</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Inoishi, Atsushi</creator><creator>Yoshioka, Yuto</creator><creator>Zhao, Liwei</creator><creator>Kitajou, Ayuko</creator><creator>Okada, Shigeto</creator><general>John Wiley & Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201711</creationdate><title>Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution</title><author>Inoishi, Atsushi ; Yoshioka, Yuto ; Zhao, Liwei ; Kitajou, Ayuko ; Okada, Shigeto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2510-c1da5a0bddb60270551e9620376a2891eb9fdb34e1c883b7766651bc47582ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cathode</topic><topic>Cathodes</topic><topic>Chemical synthesis</topic><topic>Current carriers</topic><topic>Electrode materials</topic><topic>energy density</topic><topic>Flux density</topic><topic>magnesium</topic><topic>Na3V2(PO4)3</topic><topic>NASICON</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inoishi, Atsushi</creatorcontrib><creatorcontrib>Yoshioka, Yuto</creatorcontrib><creatorcontrib>Zhao, Liwei</creatorcontrib><creatorcontrib>Kitajou, Ayuko</creatorcontrib><creatorcontrib>Okada, Shigeto</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inoishi, Atsushi</au><au>Yoshioka, Yuto</au><au>Zhao, Liwei</au><au>Kitajou, Ayuko</au><au>Okada, Shigeto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution</atitle><jtitle>ChemElectroChem</jtitle><date>2017-11</date><risdate>2017</risdate><volume>4</volume><issue>11</issue><spage>2755</spage><epage>2759</epage><pages>2755-2759</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Na3V2(PO4)3, with a NASICON‐type structure, is a promising cathode material for use in sodium‐ion batteries based on a two‐electron reaction and operating at 3.4 V. Herein, we report the synthesis of Na3+xV2‐xMgx(PO4)3 (x=0.1 to 0.7) for use as a cathode material in sodium‐ion batteries. In this work, Na3.2V1.8Mg0.2(PO4)3 was found to exhibit a larger reversible capacity than the theoretical capacity of undoped Na3V2(PO4)3, as a result of the larger number of Na+ in the initial composition, as well as access to the V4+/V5+ redox couple. In contrast, although Mg‐rich samples such as Na3.5V1.5Mg0.5(PO4)3 showed a relatively clear plateau for the V4+/V5+ redox couple, the total discharge capacities were lower than that of the undoped Na3V2(PO4)3 because of the irreversibility in the V4+/V5+ redox region. ICP data clearly indicated that Mg2+ are stable within the NASICON structure during redox cycling and that Na+ is the charge carriers in this cathode.
Better than predicted: To improve the cathode performance of Na3V2(PO4)3 in Na‐ion batteries, Mg2+ substitutional doping for V3+ was investigated. It allows access to the V4+/V5+ redox couple and to introduce more Na+ in the initial composition. As a result, Na3+xV2‐xMgx(PO4)3 successfully produces a larger energy density than the theoretical value of Na3V2(PO4)3.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.201700540</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2017-11, Vol.4 (11), p.2755-2759 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_journals_1963330225 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cathode Cathodes Chemical synthesis Current carriers Electrode materials energy density Flux density magnesium Na3V2(PO4)3 NASICON Rechargeable batteries Sodium-ion batteries |
title | Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20the%20Energy%20Density%20of%20Na3V2(PO4)3%20by%20Mg%20Substitution&rft.jtitle=ChemElectroChem&rft.au=Inoishi,%20Atsushi&rft.date=2017-11&rft.volume=4&rft.issue=11&rft.spage=2755&rft.epage=2759&rft.pages=2755-2759&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201700540&rft_dat=%3Cproquest_wiley%3E1963330225%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963330225&rft_id=info:pmid/&rfr_iscdi=true |