Carbon Nanotubes/Carbon Fiber Paper Supported MnO2 Cathode Catalyst for Li−Air Batteries

Lithium−air batteries (LABs) are considered one of the most promising energy conversion systems for delivering large specific energy. However, practical applications still face major challenges, including poor rate capability, short cycle life, and low round‐trip efficiencies. Here, we report a nove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2017-11, Vol.4 (11), p.2997-3003
Hauptverfasser: Hu, Si‐Jiang, Fan, Xiao‐Ping, Chen, Jing, Peng, Ji‐Ming, Wang, Hong‐Qiang, Huang, You‐Guo, Li, Qing‐Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3003
container_issue 11
container_start_page 2997
container_title ChemElectroChem
container_volume 4
creator Hu, Si‐Jiang
Fan, Xiao‐Ping
Chen, Jing
Peng, Ji‐Ming
Wang, Hong‐Qiang
Huang, You‐Guo
Li, Qing‐Yu
description Lithium−air batteries (LABs) are considered one of the most promising energy conversion systems for delivering large specific energy. However, practical applications still face major challenges, including poor rate capability, short cycle life, and low round‐trip efficiencies. Here, we report a novel strategy to improve the catalytic activity of MnO2 through the combination of 3D MnO2 and carbon nanotubes/carbon fiber paper (CNTs/CFP) with a binder‐free structure. Side reactions related to the binder are precluded in this design. The presence of CNTs not only promotes the formation of a 3D structure of the air electrode, but directs the uniform deposition of MnO2. When applied as a cathode in LABs, the as‐prepared MnO2/CNTs/CFP electrode achieves comparable specific capacity (with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1). The encouraging electrochemical performance is found to benefit from free‐standing nanoporous structures, which provide more active sites for enabling oxygen reduction. It is also attributed to the decreased side reactions. Binder‐free and freestanding: The in situ formation of a binder‐free and freestanding 3D MnO2/CNTs/CFP electrode increases the use efficiency of the catalyst. It achieves a good specific capacity, with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1.
doi_str_mv 10.1002/celc.201700582
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1963330196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963330196</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2702-6f6623f8ba03d7783b60c020cd15e810dc02cfa6fe1fd23df2c9556cc1b061243</originalsourceid><addsrcrecordid>eNpNkM9Kw0AQxhdRsNRePS94Tju7azbpsYbWCtEK6sXLstk_mhKzcbNB-gaefUSfxISW4mV-8w3DfMyH0CWBKQGgM2UqNaVAEoA4pSdoRMmcR0AJP_3Xn6NJ224BgBCIWcpH6DWTvnA1fpC1C11h2tlhsCoL4_GjbPr61DWN88FofF9vKM5keHfaDJTVrg3YOo_z8vf7Z1F6fCNDML407QU6s7JqzeTAMXpZLZ-zdZRvbu-yRR690QRoxC3nlNm0kMB0kqSs4KCAgtIkNikB3QtlJbeGWE2ZtlTN45grRQrghF6zMbra3228--xMG8TWdb7uLUX_N2MMBozRfL_1VVZmJxpffki_EwTEkJ8Y8hPH_ES2zLOjYn_6V2X4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963330196</pqid></control><display><type>article</type><title>Carbon Nanotubes/Carbon Fiber Paper Supported MnO2 Cathode Catalyst for Li−Air Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Si‐Jiang ; Fan, Xiao‐Ping ; Chen, Jing ; Peng, Ji‐Ming ; Wang, Hong‐Qiang ; Huang, You‐Guo ; Li, Qing‐Yu</creator><creatorcontrib>Hu, Si‐Jiang ; Fan, Xiao‐Ping ; Chen, Jing ; Peng, Ji‐Ming ; Wang, Hong‐Qiang ; Huang, You‐Guo ; Li, Qing‐Yu</creatorcontrib><description>Lithium−air batteries (LABs) are considered one of the most promising energy conversion systems for delivering large specific energy. However, practical applications still face major challenges, including poor rate capability, short cycle life, and low round‐trip efficiencies. Here, we report a novel strategy to improve the catalytic activity of MnO2 through the combination of 3D MnO2 and carbon nanotubes/carbon fiber paper (CNTs/CFP) with a binder‐free structure. Side reactions related to the binder are precluded in this design. The presence of CNTs not only promotes the formation of a 3D structure of the air electrode, but directs the uniform deposition of MnO2. When applied as a cathode in LABs, the as‐prepared MnO2/CNTs/CFP electrode achieves comparable specific capacity (with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1). The encouraging electrochemical performance is found to benefit from free‐standing nanoporous structures, which provide more active sites for enabling oxygen reduction. It is also attributed to the decreased side reactions. Binder‐free and freestanding: The in situ formation of a binder‐free and freestanding 3D MnO2/CNTs/CFP electrode increases the use efficiency of the catalyst. It achieves a good specific capacity, with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201700582</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Batteries ; Carbon fibers ; Carbon nanotubes ; Catalysis ; Catalytic activity ; cathode ; Cathodes ; Electrochemical analysis ; Electrodes ; Energy conversion ; Li-air batteries ; Lithium ; Manganese dioxide ; Metal air batteries ; MnO2 ; Nanotubes ; oxygen reduction reaction</subject><ispartof>ChemElectroChem, 2017-11, Vol.4 (11), p.2997-3003</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1254-9514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201700582$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201700582$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hu, Si‐Jiang</creatorcontrib><creatorcontrib>Fan, Xiao‐Ping</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Peng, Ji‐Ming</creatorcontrib><creatorcontrib>Wang, Hong‐Qiang</creatorcontrib><creatorcontrib>Huang, You‐Guo</creatorcontrib><creatorcontrib>Li, Qing‐Yu</creatorcontrib><title>Carbon Nanotubes/Carbon Fiber Paper Supported MnO2 Cathode Catalyst for Li−Air Batteries</title><title>ChemElectroChem</title><description>Lithium−air batteries (LABs) are considered one of the most promising energy conversion systems for delivering large specific energy. However, practical applications still face major challenges, including poor rate capability, short cycle life, and low round‐trip efficiencies. Here, we report a novel strategy to improve the catalytic activity of MnO2 through the combination of 3D MnO2 and carbon nanotubes/carbon fiber paper (CNTs/CFP) with a binder‐free structure. Side reactions related to the binder are precluded in this design. The presence of CNTs not only promotes the formation of a 3D structure of the air electrode, but directs the uniform deposition of MnO2. When applied as a cathode in LABs, the as‐prepared MnO2/CNTs/CFP electrode achieves comparable specific capacity (with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1). The encouraging electrochemical performance is found to benefit from free‐standing nanoporous structures, which provide more active sites for enabling oxygen reduction. It is also attributed to the decreased side reactions. Binder‐free and freestanding: The in situ formation of a binder‐free and freestanding 3D MnO2/CNTs/CFP electrode increases the use efficiency of the catalyst. It achieves a good specific capacity, with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1.</description><subject>Batteries</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>cathode</subject><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Energy conversion</subject><subject>Li-air batteries</subject><subject>Lithium</subject><subject>Manganese dioxide</subject><subject>Metal air batteries</subject><subject>MnO2</subject><subject>Nanotubes</subject><subject>oxygen reduction reaction</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkM9Kw0AQxhdRsNRePS94Tju7azbpsYbWCtEK6sXLstk_mhKzcbNB-gaefUSfxISW4mV-8w3DfMyH0CWBKQGgM2UqNaVAEoA4pSdoRMmcR0AJP_3Xn6NJ224BgBCIWcpH6DWTvnA1fpC1C11h2tlhsCoL4_GjbPr61DWN88FofF9vKM5keHfaDJTVrg3YOo_z8vf7Z1F6fCNDML407QU6s7JqzeTAMXpZLZ-zdZRvbu-yRR690QRoxC3nlNm0kMB0kqSs4KCAgtIkNikB3QtlJbeGWE2ZtlTN45grRQrghF6zMbra3228--xMG8TWdb7uLUX_N2MMBozRfL_1VVZmJxpffki_EwTEkJ8Y8hPH_ES2zLOjYn_6V2X4</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Hu, Si‐Jiang</creator><creator>Fan, Xiao‐Ping</creator><creator>Chen, Jing</creator><creator>Peng, Ji‐Ming</creator><creator>Wang, Hong‐Qiang</creator><creator>Huang, You‐Guo</creator><creator>Li, Qing‐Yu</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1254-9514</orcidid></search><sort><creationdate>201711</creationdate><title>Carbon Nanotubes/Carbon Fiber Paper Supported MnO2 Cathode Catalyst for Li−Air Batteries</title><author>Hu, Si‐Jiang ; Fan, Xiao‐Ping ; Chen, Jing ; Peng, Ji‐Ming ; Wang, Hong‐Qiang ; Huang, You‐Guo ; Li, Qing‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2702-6f6623f8ba03d7783b60c020cd15e810dc02cfa6fe1fd23df2c9556cc1b061243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Batteries</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>cathode</topic><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Energy conversion</topic><topic>Li-air batteries</topic><topic>Lithium</topic><topic>Manganese dioxide</topic><topic>Metal air batteries</topic><topic>MnO2</topic><topic>Nanotubes</topic><topic>oxygen reduction reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Si‐Jiang</creatorcontrib><creatorcontrib>Fan, Xiao‐Ping</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Peng, Ji‐Ming</creatorcontrib><creatorcontrib>Wang, Hong‐Qiang</creatorcontrib><creatorcontrib>Huang, You‐Guo</creatorcontrib><creatorcontrib>Li, Qing‐Yu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Si‐Jiang</au><au>Fan, Xiao‐Ping</au><au>Chen, Jing</au><au>Peng, Ji‐Ming</au><au>Wang, Hong‐Qiang</au><au>Huang, You‐Guo</au><au>Li, Qing‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotubes/Carbon Fiber Paper Supported MnO2 Cathode Catalyst for Li−Air Batteries</atitle><jtitle>ChemElectroChem</jtitle><date>2017-11</date><risdate>2017</risdate><volume>4</volume><issue>11</issue><spage>2997</spage><epage>3003</epage><pages>2997-3003</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Lithium−air batteries (LABs) are considered one of the most promising energy conversion systems for delivering large specific energy. However, practical applications still face major challenges, including poor rate capability, short cycle life, and low round‐trip efficiencies. Here, we report a novel strategy to improve the catalytic activity of MnO2 through the combination of 3D MnO2 and carbon nanotubes/carbon fiber paper (CNTs/CFP) with a binder‐free structure. Side reactions related to the binder are precluded in this design. The presence of CNTs not only promotes the formation of a 3D structure of the air electrode, but directs the uniform deposition of MnO2. When applied as a cathode in LABs, the as‐prepared MnO2/CNTs/CFP electrode achieves comparable specific capacity (with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1). The encouraging electrochemical performance is found to benefit from free‐standing nanoporous structures, which provide more active sites for enabling oxygen reduction. It is also attributed to the decreased side reactions. Binder‐free and freestanding: The in situ formation of a binder‐free and freestanding 3D MnO2/CNTs/CFP electrode increases the use efficiency of the catalyst. It achieves a good specific capacity, with a discharge capacity of 8723.5 mAh g−1(CNTs+MnO2) at 100 mA g−1.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201700582</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1254-9514</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2017-11, Vol.4 (11), p.2997-3003
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_1963330196
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Carbon fibers
Carbon nanotubes
Catalysis
Catalytic activity
cathode
Cathodes
Electrochemical analysis
Electrodes
Energy conversion
Li-air batteries
Lithium
Manganese dioxide
Metal air batteries
MnO2
Nanotubes
oxygen reduction reaction
title Carbon Nanotubes/Carbon Fiber Paper Supported MnO2 Cathode Catalyst for Li−Air Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotubes/Carbon%20Fiber%20Paper%20Supported%20MnO2%20Cathode%20Catalyst%20for%20Li%E2%88%92Air%20Batteries&rft.jtitle=ChemElectroChem&rft.au=Hu,%20Si%E2%80%90Jiang&rft.date=2017-11&rft.volume=4&rft.issue=11&rft.spage=2997&rft.epage=3003&rft.pages=2997-3003&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201700582&rft_dat=%3Cproquest_wiley%3E1963330196%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963330196&rft_id=info:pmid/&rfr_iscdi=true