Nitrogen fertilisation reduces sink strength of poplar ectomycorrhizae during recovery after drought more than phosphorus fertilisation

Background and aims Drought reduces the carbon (C) flux from leaves (source) to mycorrhizal roots (sink); however, during recovery from drought, C flux exceeds the levels observed in irrigated controls. This process could be source- or sink-controlled. We studied this source–sink relationship in an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2017-10, Vol.419 (1/2), p.405-422
Hauptverfasser: Nickel, U. T., Winkler, J. B., Mühlhans, S., Buegger, F., Munch, J. C., Pritsch, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 1/2
container_start_page 405
container_title Plant and soil
container_volume 419
creator Nickel, U. T.
Winkler, J. B.
Mühlhans, S.
Buegger, F.
Munch, J. C.
Pritsch, K.
description Background and aims Drought reduces the carbon (C) flux from leaves (source) to mycorrhizal roots (sink); however, during recovery from drought, C flux exceeds the levels observed in irrigated controls. This process could be source- or sink-controlled. We studied this source–sink relationship in an agronomically used poplar clone grown at different levels of nitrogen (N) and phosphorus (P) fertilisation as used in silvoarable agroforestry systems. Methods We conducted a fully factorial pot experiment combining four fertiliser and two drought regimes. Gas exchange and chlorophyll and flavonol indices were regularly monitored. One week after rewatering, we performed 13CO2 pulse labelling. At harvest, enzyme activities of ectomycorrhizal root tips were determined. Results After one week of recovery, we observed an excess in C allocation to ectomycorrhizae (ECM) in non-N-fertilised treatments. However, net photosynthesis only recovered to the level of continuously irrigated controls. Drought increased chitinase, cellulase, phosphatase and peptidase activities, but the latter only in N-fertilised treatments. Conclusions We add evidence that the allocation of recently assimilated C is most likely sink-controlled. Less C allocation to recovering ECM supplied with fertiliser may be either due to better nutritional status and hence higher stress tolerance, or due to partitioning between above and below-ground sinks.
doi_str_mv 10.1007/s11104-017-3354-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1963176976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514449294</galeid><jstor_id>26651522</jstor_id><sourcerecordid>A514449294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-289326a8e5e7e279e0a7ce2520831e107c1c5cea5184c82b5f83d4650b7468c93</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYM44HX0AVwIAdc95j_dy2HwDwbdODC7kElXd-d6b6etpIU7L-Brm0uL6EaKUCScL6eoQ8grzq44Y_Zt5pwz1TBuGym1asQTsuPaykYzaZ6SHWNSNMx298_I85z37HznZkd-fo4F0wgzHQBLPMTsS0wzRejXAJnmOH-juSDMY5loGuiSloNHCqGk4ykkxCk-eqD9inEeKxbSD8AT9UMBpD2mdZwKPSYEWiY_02VKuR5c87-GL8jF4A8ZXv7ul-Tu_buvNx-b2y8fPt1c3zZBWlsa0XZSGN-CBgvCdsC8DSC0YK3kwJkNPOgAXvNWhVY86KGVvTKaPVhl2tDJS_Jm-3fB9H2FXNw-rThXS8c7I7k1nTVVdbWpRn8AF-chFfShVg_HGNIMQ6zv15orpTrRqQrwDQiYckYY3ILx6PHkOHPngNwWkKsBuXNATlRGbExezrsD_GuU_0CvN2ifS8I_LsIYzbUQ8hfFkJ_f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963176976</pqid></control><display><type>article</type><title>Nitrogen fertilisation reduces sink strength of poplar ectomycorrhizae during recovery after drought more than phosphorus fertilisation</title><source>SpringerLink Journals</source><source>Jstor Complete Legacy</source><creator>Nickel, U. T. ; Winkler, J. B. ; Mühlhans, S. ; Buegger, F. ; Munch, J. C. ; Pritsch, K.</creator><creatorcontrib>Nickel, U. T. ; Winkler, J. B. ; Mühlhans, S. ; Buegger, F. ; Munch, J. C. ; Pritsch, K.</creatorcontrib><description>Background and aims Drought reduces the carbon (C) flux from leaves (source) to mycorrhizal roots (sink); however, during recovery from drought, C flux exceeds the levels observed in irrigated controls. This process could be source- or sink-controlled. We studied this source–sink relationship in an agronomically used poplar clone grown at different levels of nitrogen (N) and phosphorus (P) fertilisation as used in silvoarable agroforestry systems. Methods We conducted a fully factorial pot experiment combining four fertiliser and two drought regimes. Gas exchange and chlorophyll and flavonol indices were regularly monitored. One week after rewatering, we performed 13CO2 pulse labelling. At harvest, enzyme activities of ectomycorrhizal root tips were determined. Results After one week of recovery, we observed an excess in C allocation to ectomycorrhizae (ECM) in non-N-fertilised treatments. However, net photosynthesis only recovered to the level of continuously irrigated controls. Drought increased chitinase, cellulase, phosphatase and peptidase activities, but the latter only in N-fertilised treatments. Conclusions We add evidence that the allocation of recently assimilated C is most likely sink-controlled. Less C allocation to recovering ECM supplied with fertiliser may be either due to better nutritional status and hence higher stress tolerance, or due to partitioning between above and below-ground sinks.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-017-3354-2</identifier><language>eng</language><publisher>Cham: Springer</publisher><subject>Agroforestry ; Agronomy ; Biomedical and Life Sciences ; Cellulase ; Chitinase ; Chlorophyll ; Drought ; Droughts ; Ecology ; Ectomycorrhizas ; Enzymatic activity ; Extracellular matrix ; Fertilization ; Fertilizers ; Gas exchange ; Health aspects ; Labeling ; Life Sciences ; Nitrogen ; Nitrogen fertilizers ; Nutritional status ; Peptidase ; Phosphate fertilizers ; Phosphorus ; Photosynthesis ; Plant Physiology ; Plant Sciences ; Poplar ; Populus ; Recovery ; Regular Article ; Sinkholes ; Soil Science &amp; Conservation ; Source-sink relationships ; Tips</subject><ispartof>Plant and soil, 2017-10, Vol.419 (1/2), p.405-422</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Springer International Publishing AG 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-289326a8e5e7e279e0a7ce2520831e107c1c5cea5184c82b5f83d4650b7468c93</citedby><cites>FETCH-LOGICAL-c377t-289326a8e5e7e279e0a7ce2520831e107c1c5cea5184c82b5f83d4650b7468c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26651522$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26651522$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,41469,42538,51300,57998,58231</link.rule.ids></links><search><creatorcontrib>Nickel, U. T.</creatorcontrib><creatorcontrib>Winkler, J. B.</creatorcontrib><creatorcontrib>Mühlhans, S.</creatorcontrib><creatorcontrib>Buegger, F.</creatorcontrib><creatorcontrib>Munch, J. C.</creatorcontrib><creatorcontrib>Pritsch, K.</creatorcontrib><title>Nitrogen fertilisation reduces sink strength of poplar ectomycorrhizae during recovery after drought more than phosphorus fertilisation</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aims Drought reduces the carbon (C) flux from leaves (source) to mycorrhizal roots (sink); however, during recovery from drought, C flux exceeds the levels observed in irrigated controls. This process could be source- or sink-controlled. We studied this source–sink relationship in an agronomically used poplar clone grown at different levels of nitrogen (N) and phosphorus (P) fertilisation as used in silvoarable agroforestry systems. Methods We conducted a fully factorial pot experiment combining four fertiliser and two drought regimes. Gas exchange and chlorophyll and flavonol indices were regularly monitored. One week after rewatering, we performed 13CO2 pulse labelling. At harvest, enzyme activities of ectomycorrhizal root tips were determined. Results After one week of recovery, we observed an excess in C allocation to ectomycorrhizae (ECM) in non-N-fertilised treatments. However, net photosynthesis only recovered to the level of continuously irrigated controls. Drought increased chitinase, cellulase, phosphatase and peptidase activities, but the latter only in N-fertilised treatments. Conclusions We add evidence that the allocation of recently assimilated C is most likely sink-controlled. Less C allocation to recovering ECM supplied with fertiliser may be either due to better nutritional status and hence higher stress tolerance, or due to partitioning between above and below-ground sinks.</description><subject>Agroforestry</subject><subject>Agronomy</subject><subject>Biomedical and Life Sciences</subject><subject>Cellulase</subject><subject>Chitinase</subject><subject>Chlorophyll</subject><subject>Drought</subject><subject>Droughts</subject><subject>Ecology</subject><subject>Ectomycorrhizas</subject><subject>Enzymatic activity</subject><subject>Extracellular matrix</subject><subject>Fertilization</subject><subject>Fertilizers</subject><subject>Gas exchange</subject><subject>Health aspects</subject><subject>Labeling</subject><subject>Life Sciences</subject><subject>Nitrogen</subject><subject>Nitrogen fertilizers</subject><subject>Nutritional status</subject><subject>Peptidase</subject><subject>Phosphate fertilizers</subject><subject>Phosphorus</subject><subject>Photosynthesis</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Poplar</subject><subject>Populus</subject><subject>Recovery</subject><subject>Regular Article</subject><subject>Sinkholes</subject><subject>Soil Science &amp; Conservation</subject><subject>Source-sink relationships</subject><subject>Tips</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2KFTEQhYM44HX0AVwIAdc95j_dy2HwDwbdODC7kElXd-d6b6etpIU7L-Brm0uL6EaKUCScL6eoQ8grzq44Y_Zt5pwz1TBuGym1asQTsuPaykYzaZ6SHWNSNMx298_I85z37HznZkd-fo4F0wgzHQBLPMTsS0wzRejXAJnmOH-juSDMY5loGuiSloNHCqGk4ykkxCk-eqD9inEeKxbSD8AT9UMBpD2mdZwKPSYEWiY_02VKuR5c87-GL8jF4A8ZXv7ul-Tu_buvNx-b2y8fPt1c3zZBWlsa0XZSGN-CBgvCdsC8DSC0YK3kwJkNPOgAXvNWhVY86KGVvTKaPVhl2tDJS_Jm-3fB9H2FXNw-rThXS8c7I7k1nTVVdbWpRn8AF-chFfShVg_HGNIMQ6zv15orpTrRqQrwDQiYckYY3ILx6PHkOHPngNwWkKsBuXNATlRGbExezrsD_GuU_0CvN2ifS8I_LsIYzbUQ8hfFkJ_f</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Nickel, U. T.</creator><creator>Winkler, J. B.</creator><creator>Mühlhans, S.</creator><creator>Buegger, F.</creator><creator>Munch, J. C.</creator><creator>Pritsch, K.</creator><general>Springer</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20171001</creationdate><title>Nitrogen fertilisation reduces sink strength of poplar ectomycorrhizae during recovery after drought more than phosphorus fertilisation</title><author>Nickel, U. T. ; Winkler, J. B. ; Mühlhans, S. ; Buegger, F. ; Munch, J. C. ; Pritsch, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-289326a8e5e7e279e0a7ce2520831e107c1c5cea5184c82b5f83d4650b7468c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agroforestry</topic><topic>Agronomy</topic><topic>Biomedical and Life Sciences</topic><topic>Cellulase</topic><topic>Chitinase</topic><topic>Chlorophyll</topic><topic>Drought</topic><topic>Droughts</topic><topic>Ecology</topic><topic>Ectomycorrhizas</topic><topic>Enzymatic activity</topic><topic>Extracellular matrix</topic><topic>Fertilization</topic><topic>Fertilizers</topic><topic>Gas exchange</topic><topic>Health aspects</topic><topic>Labeling</topic><topic>Life Sciences</topic><topic>Nitrogen</topic><topic>Nitrogen fertilizers</topic><topic>Nutritional status</topic><topic>Peptidase</topic><topic>Phosphate fertilizers</topic><topic>Phosphorus</topic><topic>Photosynthesis</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Poplar</topic><topic>Populus</topic><topic>Recovery</topic><topic>Regular Article</topic><topic>Sinkholes</topic><topic>Soil Science &amp; Conservation</topic><topic>Source-sink relationships</topic><topic>Tips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nickel, U. T.</creatorcontrib><creatorcontrib>Winkler, J. B.</creatorcontrib><creatorcontrib>Mühlhans, S.</creatorcontrib><creatorcontrib>Buegger, F.</creatorcontrib><creatorcontrib>Munch, J. C.</creatorcontrib><creatorcontrib>Pritsch, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nickel, U. T.</au><au>Winkler, J. B.</au><au>Mühlhans, S.</au><au>Buegger, F.</au><au>Munch, J. C.</au><au>Pritsch, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen fertilisation reduces sink strength of poplar ectomycorrhizae during recovery after drought more than phosphorus fertilisation</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>419</volume><issue>1/2</issue><spage>405</spage><epage>422</epage><pages>405-422</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Background and aims Drought reduces the carbon (C) flux from leaves (source) to mycorrhizal roots (sink); however, during recovery from drought, C flux exceeds the levels observed in irrigated controls. This process could be source- or sink-controlled. We studied this source–sink relationship in an agronomically used poplar clone grown at different levels of nitrogen (N) and phosphorus (P) fertilisation as used in silvoarable agroforestry systems. Methods We conducted a fully factorial pot experiment combining four fertiliser and two drought regimes. Gas exchange and chlorophyll and flavonol indices were regularly monitored. One week after rewatering, we performed 13CO2 pulse labelling. At harvest, enzyme activities of ectomycorrhizal root tips were determined. Results After one week of recovery, we observed an excess in C allocation to ectomycorrhizae (ECM) in non-N-fertilised treatments. However, net photosynthesis only recovered to the level of continuously irrigated controls. Drought increased chitinase, cellulase, phosphatase and peptidase activities, but the latter only in N-fertilised treatments. Conclusions We add evidence that the allocation of recently assimilated C is most likely sink-controlled. Less C allocation to recovering ECM supplied with fertiliser may be either due to better nutritional status and hence higher stress tolerance, or due to partitioning between above and below-ground sinks.</abstract><cop>Cham</cop><pub>Springer</pub><doi>10.1007/s11104-017-3354-2</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2017-10, Vol.419 (1/2), p.405-422
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_journals_1963176976
source SpringerLink Journals; Jstor Complete Legacy
subjects Agroforestry
Agronomy
Biomedical and Life Sciences
Cellulase
Chitinase
Chlorophyll
Drought
Droughts
Ecology
Ectomycorrhizas
Enzymatic activity
Extracellular matrix
Fertilization
Fertilizers
Gas exchange
Health aspects
Labeling
Life Sciences
Nitrogen
Nitrogen fertilizers
Nutritional status
Peptidase
Phosphate fertilizers
Phosphorus
Photosynthesis
Plant Physiology
Plant Sciences
Poplar
Populus
Recovery
Regular Article
Sinkholes
Soil Science & Conservation
Source-sink relationships
Tips
title Nitrogen fertilisation reduces sink strength of poplar ectomycorrhizae during recovery after drought more than phosphorus fertilisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20fertilisation%20reduces%20sink%20strength%20of%20poplar%20ectomycorrhizae%20during%20recovery%20after%20drought%20more%20than%20phosphorus%20fertilisation&rft.jtitle=Plant%20and%20soil&rft.au=Nickel,%20U.%20T.&rft.date=2017-10-01&rft.volume=419&rft.issue=1/2&rft.spage=405&rft.epage=422&rft.pages=405-422&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-017-3354-2&rft_dat=%3Cgale_proqu%3EA514449294%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963176976&rft_id=info:pmid/&rft_galeid=A514449294&rft_jstor_id=26651522&rfr_iscdi=true