Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines
Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behav...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Betriebswirtschaft 2012-07, Vol.82 (Suppl 4), p.25-46 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | Suppl 4 |
container_start_page | 25 |
container_title | Zeitschrift für Betriebswirtschaft |
container_volume | 82 |
creator | Pfeiffer, Jella Probst, Malte Steitz, Wolfgang Rothlauf, Franz |
description | Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies. |
doi_str_mv | 10.1007/s11573-012-0581-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962773800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962773800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gsMRuu7SZx2FDFo1IlFpgt17kpKc0D30SoGz8dR2HowmT56JzP1sfYtYRbCZDdkZRJpgVIJSAxUsAJm0mTSmFyZU7ZDGCxEEpn6pxdEO0AEqVUPmM_q6bEEKpmywv0FVVtw6kPrsdthcTL0Nbc7yv_GUN0NfGqOSoOXdeGntOBeqzpnjve4DfvQuuRSESMH8Gui4nzH3yg8Up9pPM6BlWDdMnOSrcnvPo75-z96fFt-SLWr8-r5cNaeJlKEEmpcy2VMRq88TmozCU5yI00flEkmxKTHJV2C1_6VCUZusK41BQlpqCcMlrP2c3EjX_5GpB6u2uH0MQnrcxTlWXaAMSWnFo-tEQBS9uFqnbhYCXYUbSdRNso2o6i7bhR04a60SOGI_K_o1_njYLy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962773800</pqid></control><display><type>article</type><title>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</title><source>SpringerLink Journals</source><creator>Pfeiffer, Jella ; Probst, Malte ; Steitz, Wolfgang ; Rothlauf, Franz</creator><creatorcontrib>Pfeiffer, Jella ; Probst, Malte ; Steitz, Wolfgang ; Rothlauf, Franz</creatorcontrib><description>Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies.</description><identifier>ISSN: 0044-2372</identifier><identifier>EISSN: 1861-8928</identifier><identifier>DOI: 10.1007/s11573-012-0581-0</identifier><language>eng</language><publisher>Wiesbaden: SP Gabler Verlag</publisher><subject>Accounting/Auditing ; Business and Management ; Business Taxation/Tax Law ; Consumer behavior ; Decision making ; Decision support systems ; Human Resource Management ; Operations Management ; Organization ; User interface ; Websites ; ZfB-Special Issue 4/2012</subject><ispartof>Zeitschrift für Betriebswirtschaft, 2012-07, Vol.82 (Suppl 4), p.25-46</ispartof><rights>Gabler Verlag 2012</rights><rights>Copyright Springer Science & Business Media Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</citedby><cites>FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11573-012-0581-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11573-012-0581-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pfeiffer, Jella</creatorcontrib><creatorcontrib>Probst, Malte</creatorcontrib><creatorcontrib>Steitz, Wolfgang</creatorcontrib><creatorcontrib>Rothlauf, Franz</creatorcontrib><title>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</title><title>Zeitschrift für Betriebswirtschaft</title><addtitle>Z Betriebswirtsch</addtitle><description>Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies.</description><subject>Accounting/Auditing</subject><subject>Business and Management</subject><subject>Business Taxation/Tax Law</subject><subject>Consumer behavior</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Human Resource Management</subject><subject>Operations Management</subject><subject>Organization</subject><subject>User interface</subject><subject>Websites</subject><subject>ZfB-Special Issue 4/2012</subject><issn>0044-2372</issn><issn>1861-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gsMRuu7SZx2FDFo1IlFpgt17kpKc0D30SoGz8dR2HowmT56JzP1sfYtYRbCZDdkZRJpgVIJSAxUsAJm0mTSmFyZU7ZDGCxEEpn6pxdEO0AEqVUPmM_q6bEEKpmywv0FVVtw6kPrsdthcTL0Nbc7yv_GUN0NfGqOSoOXdeGntOBeqzpnjve4DfvQuuRSESMH8Gui4nzH3yg8Up9pPM6BlWDdMnOSrcnvPo75-z96fFt-SLWr8-r5cNaeJlKEEmpcy2VMRq88TmozCU5yI00flEkmxKTHJV2C1_6VCUZusK41BQlpqCcMlrP2c3EjX_5GpB6u2uH0MQnrcxTlWXaAMSWnFo-tEQBS9uFqnbhYCXYUbSdRNso2o6i7bhR04a60SOGI_K_o1_njYLy</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Pfeiffer, Jella</creator><creator>Probst, Malte</creator><creator>Steitz, Wolfgang</creator><creator>Rothlauf, Franz</creator><general>SP Gabler Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120701</creationdate><title>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</title><author>Pfeiffer, Jella ; Probst, Malte ; Steitz, Wolfgang ; Rothlauf, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accounting/Auditing</topic><topic>Business and Management</topic><topic>Business Taxation/Tax Law</topic><topic>Consumer behavior</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Human Resource Management</topic><topic>Operations Management</topic><topic>Organization</topic><topic>User interface</topic><topic>Websites</topic><topic>ZfB-Special Issue 4/2012</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfeiffer, Jella</creatorcontrib><creatorcontrib>Probst, Malte</creatorcontrib><creatorcontrib>Steitz, Wolfgang</creatorcontrib><creatorcontrib>Rothlauf, Franz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Zeitschrift für Betriebswirtschaft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfeiffer, Jella</au><au>Probst, Malte</au><au>Steitz, Wolfgang</au><au>Rothlauf, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</atitle><jtitle>Zeitschrift für Betriebswirtschaft</jtitle><stitle>Z Betriebswirtsch</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>82</volume><issue>Suppl 4</issue><spage>25</spage><epage>46</epage><pages>25-46</pages><issn>0044-2372</issn><eissn>1861-8928</eissn><abstract>Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies.</abstract><cop>Wiesbaden</cop><pub>SP Gabler Verlag</pub><doi>10.1007/s11573-012-0581-0</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2372 |
ispartof | Zeitschrift für Betriebswirtschaft, 2012-07, Vol.82 (Suppl 4), p.25-46 |
issn | 0044-2372 1861-8928 |
language | eng |
recordid | cdi_proquest_journals_1962773800 |
source | SpringerLink Journals |
subjects | Accounting/Auditing Business and Management Business Taxation/Tax Law Consumer behavior Decision making Decision support systems Human Resource Management Operations Management Organization User interface Websites ZfB-Special Issue 4/2012 |
title | Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20decision%20strategies%20from%20clickstreams%20in%20decision%20support%20systems:%20a%20new%20process-tracing%20approach%20using%20state%20machines&rft.jtitle=Zeitschrift%20f%C3%BCr%20Betriebswirtschaft&rft.au=Pfeiffer,%20Jella&rft.date=2012-07-01&rft.volume=82&rft.issue=Suppl%204&rft.spage=25&rft.epage=46&rft.pages=25-46&rft.issn=0044-2372&rft.eissn=1861-8928&rft_id=info:doi/10.1007/s11573-012-0581-0&rft_dat=%3Cproquest_cross%3E1962773800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962773800&rft_id=info:pmid/&rfr_iscdi=true |