Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines

Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Betriebswirtschaft 2012-07, Vol.82 (Suppl 4), p.25-46
Hauptverfasser: Pfeiffer, Jella, Probst, Malte, Steitz, Wolfgang, Rothlauf, Franz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue Suppl 4
container_start_page 25
container_title Zeitschrift für Betriebswirtschaft
container_volume 82
creator Pfeiffer, Jella
Probst, Malte
Steitz, Wolfgang
Rothlauf, Franz
description Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies.
doi_str_mv 10.1007/s11573-012-0581-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962773800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962773800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gsMRuu7SZx2FDFo1IlFpgt17kpKc0D30SoGz8dR2HowmT56JzP1sfYtYRbCZDdkZRJpgVIJSAxUsAJm0mTSmFyZU7ZDGCxEEpn6pxdEO0AEqVUPmM_q6bEEKpmywv0FVVtw6kPrsdthcTL0Nbc7yv_GUN0NfGqOSoOXdeGntOBeqzpnjve4DfvQuuRSESMH8Gui4nzH3yg8Up9pPM6BlWDdMnOSrcnvPo75-z96fFt-SLWr8-r5cNaeJlKEEmpcy2VMRq88TmozCU5yI00flEkmxKTHJV2C1_6VCUZusK41BQlpqCcMlrP2c3EjX_5GpB6u2uH0MQnrcxTlWXaAMSWnFo-tEQBS9uFqnbhYCXYUbSdRNso2o6i7bhR04a60SOGI_K_o1_njYLy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962773800</pqid></control><display><type>article</type><title>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</title><source>SpringerLink Journals</source><creator>Pfeiffer, Jella ; Probst, Malte ; Steitz, Wolfgang ; Rothlauf, Franz</creator><creatorcontrib>Pfeiffer, Jella ; Probst, Malte ; Steitz, Wolfgang ; Rothlauf, Franz</creatorcontrib><description>Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies.</description><identifier>ISSN: 0044-2372</identifier><identifier>EISSN: 1861-8928</identifier><identifier>DOI: 10.1007/s11573-012-0581-0</identifier><language>eng</language><publisher>Wiesbaden: SP Gabler Verlag</publisher><subject>Accounting/Auditing ; Business and Management ; Business Taxation/Tax Law ; Consumer behavior ; Decision making ; Decision support systems ; Human Resource Management ; Operations Management ; Organization ; User interface ; Websites ; ZfB-Special Issue 4/2012</subject><ispartof>Zeitschrift für Betriebswirtschaft, 2012-07, Vol.82 (Suppl 4), p.25-46</ispartof><rights>Gabler Verlag 2012</rights><rights>Copyright Springer Science &amp; Business Media Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</citedby><cites>FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11573-012-0581-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11573-012-0581-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pfeiffer, Jella</creatorcontrib><creatorcontrib>Probst, Malte</creatorcontrib><creatorcontrib>Steitz, Wolfgang</creatorcontrib><creatorcontrib>Rothlauf, Franz</creatorcontrib><title>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</title><title>Zeitschrift für Betriebswirtschaft</title><addtitle>Z Betriebswirtsch</addtitle><description>Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies.</description><subject>Accounting/Auditing</subject><subject>Business and Management</subject><subject>Business Taxation/Tax Law</subject><subject>Consumer behavior</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Human Resource Management</subject><subject>Operations Management</subject><subject>Organization</subject><subject>User interface</subject><subject>Websites</subject><subject>ZfB-Special Issue 4/2012</subject><issn>0044-2372</issn><issn>1861-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gsMRuu7SZx2FDFo1IlFpgt17kpKc0D30SoGz8dR2HowmT56JzP1sfYtYRbCZDdkZRJpgVIJSAxUsAJm0mTSmFyZU7ZDGCxEEpn6pxdEO0AEqVUPmM_q6bEEKpmywv0FVVtw6kPrsdthcTL0Nbc7yv_GUN0NfGqOSoOXdeGntOBeqzpnjve4DfvQuuRSESMH8Gui4nzH3yg8Up9pPM6BlWDdMnOSrcnvPo75-z96fFt-SLWr8-r5cNaeJlKEEmpcy2VMRq88TmozCU5yI00flEkmxKTHJV2C1_6VCUZusK41BQlpqCcMlrP2c3EjX_5GpB6u2uH0MQnrcxTlWXaAMSWnFo-tEQBS9uFqnbhYCXYUbSdRNso2o6i7bhR04a60SOGI_K_o1_njYLy</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Pfeiffer, Jella</creator><creator>Probst, Malte</creator><creator>Steitz, Wolfgang</creator><creator>Rothlauf, Franz</creator><general>SP Gabler Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120701</creationdate><title>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</title><author>Pfeiffer, Jella ; Probst, Malte ; Steitz, Wolfgang ; Rothlauf, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1610-5f393128830c8c9027a5901b18c4d5bfe59e23a4cfc6257ead8a68dfe602a2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accounting/Auditing</topic><topic>Business and Management</topic><topic>Business Taxation/Tax Law</topic><topic>Consumer behavior</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Human Resource Management</topic><topic>Operations Management</topic><topic>Organization</topic><topic>User interface</topic><topic>Websites</topic><topic>ZfB-Special Issue 4/2012</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfeiffer, Jella</creatorcontrib><creatorcontrib>Probst, Malte</creatorcontrib><creatorcontrib>Steitz, Wolfgang</creatorcontrib><creatorcontrib>Rothlauf, Franz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Zeitschrift für Betriebswirtschaft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfeiffer, Jella</au><au>Probst, Malte</au><au>Steitz, Wolfgang</au><au>Rothlauf, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines</atitle><jtitle>Zeitschrift für Betriebswirtschaft</jtitle><stitle>Z Betriebswirtsch</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>82</volume><issue>Suppl 4</issue><spage>25</spage><epage>46</epage><pages>25-46</pages><issn>0044-2372</issn><eissn>1861-8928</eissn><abstract>Webstores can easily gather large amounts of consumer data, including clicks on single elements of the user interface, navigation patterns, user profile data, and search texts. Such clickstream data are both interesting to merchandisers as well as to researchers in the field of decision-making behavior, because they describe consumer decision-behavior on websites. This paper introduces an approach that infers decision-behavior from clickstream data. The approach observes clicks on elements of a decision-support-system and triggers a set of state-machines for each click. Each state-machine represents a particular decision-strategy which a user can follow. The approach returns a set of decision strategies that best explain the observed click-behavior of a user. Results of two experiments show that the algorithm infers strategies accurately. In the first experiment, the approach correctly infers most of the pre-defined decision-strategies. The second study analyzes the behavior of thirty-eight respondents and finds that the inferred mix of decision-strategies fits well the behavior described in the literature to date. Results show that using decision-support-systems on a web site and observing the user’s click-behavior make it possible to infer a specific decision strategy. The proposed method is general enough to be easily applied to both research and real-world settings, along with other decision-support-systems and strategies.</abstract><cop>Wiesbaden</cop><pub>SP Gabler Verlag</pub><doi>10.1007/s11573-012-0581-0</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2372
ispartof Zeitschrift für Betriebswirtschaft, 2012-07, Vol.82 (Suppl 4), p.25-46
issn 0044-2372
1861-8928
language eng
recordid cdi_proquest_journals_1962773800
source SpringerLink Journals
subjects Accounting/Auditing
Business and Management
Business Taxation/Tax Law
Consumer behavior
Decision making
Decision support systems
Human Resource Management
Operations Management
Organization
User interface
Websites
ZfB-Special Issue 4/2012
title Inferring decision strategies from clickstreams in decision support systems: a new process-tracing approach using state machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20decision%20strategies%20from%20clickstreams%20in%20decision%20support%20systems:%20a%20new%20process-tracing%20approach%20using%20state%20machines&rft.jtitle=Zeitschrift%20f%C3%BCr%20Betriebswirtschaft&rft.au=Pfeiffer,%20Jella&rft.date=2012-07-01&rft.volume=82&rft.issue=Suppl%204&rft.spage=25&rft.epage=46&rft.pages=25-46&rft.issn=0044-2372&rft.eissn=1861-8928&rft_id=info:doi/10.1007/s11573-012-0581-0&rft_dat=%3Cproquest_cross%3E1962773800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962773800&rft_id=info:pmid/&rfr_iscdi=true