Graphene welded carbon nanotube crossbars for biaxial strain sensors
Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films l...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2017-10, Vol.123, p.786-793 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | |
container_start_page | 786 |
container_title | Carbon (New York) |
container_volume | 123 |
creator | Shi, Jidong Hu, Jing Dai, Zhaohe Zhao, Wei Liu, Peng Zhao, Lingyu Guo, Yichuan Yang, Tingting Zou, Liang Jiang, Kaili Li, Hongbian Fang, Ying |
description | Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.08.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962269110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317307935</els_id><sourcerecordid>1962269110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnTdomF0HWT1jwoueQpFNMWZM16frx39u1nj0NA--9md8j5JxByYA1l0PpTLIxlBWwtgRZAjQHZMFkywsuFTskCwCQRVNV_Jic5DxMq5BMLMjNfTLbVwxIP3HTYUfnJBpMiOPOInUp5mxNyrSPiVpvvrzZ0Dwm4wPNGHJM-ZQc9WaT8exvLsnL3e3z6qFYP90_rq7XheNcjIXltnaKGWhaCVVd933lJOOyQcVNbwTY1vQtFwLbRhmsVYtG1mgtcCUNCL4kF3PuNsX3HeZRD3GXwnRSMzXBNYoxmFRiVv2-nrDX2-TfTPrWDPS-Lz3omVLv-9Ig9dTXZLuabTgRfHhMOjuPwWHnE7pRd9H_H_AD1GZ1XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962269110</pqid></control><display><type>article</type><title>Graphene welded carbon nanotube crossbars for biaxial strain sensors</title><source>Elsevier ScienceDirect Journals</source><creator>Shi, Jidong ; Hu, Jing ; Dai, Zhaohe ; Zhao, Wei ; Liu, Peng ; Zhao, Lingyu ; Guo, Yichuan ; Yang, Tingting ; Zou, Liang ; Jiang, Kaili ; Li, Hongbian ; Fang, Ying</creator><creatorcontrib>Shi, Jidong ; Hu, Jing ; Dai, Zhaohe ; Zhao, Wei ; Liu, Peng ; Zhao, Lingyu ; Guo, Yichuan ; Yang, Tingting ; Zou, Liang ; Jiang, Kaili ; Li, Hongbian ; Fang, Ying</creatorcontrib><description>Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.08.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon nanotubes ; Conductivity ; Deformation ; Deformation mechanisms ; Finite element method ; Graphene ; Load transfer ; Mechanical properties ; Nanotubes ; Sensitivity ; Sensor arrays ; Sensors ; Sound waves ; Spatial distribution ; Strain ; Strain gauges ; Stress concentration ; Stretchability ; Substrates ; Tactile</subject><ispartof>Carbon (New York), 2017-10, Vol.123, p.786-793</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</citedby><cites>FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</cites><orcidid>0000-0002-9806-3223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317307935$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shi, Jidong</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Dai, Zhaohe</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Zhao, Lingyu</creatorcontrib><creatorcontrib>Guo, Yichuan</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zou, Liang</creatorcontrib><creatorcontrib>Jiang, Kaili</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><title>Graphene welded carbon nanotube crossbars for biaxial strain sensors</title><title>Carbon (New York)</title><description>Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures.
[Display omitted]</description><subject>Carbon nanotubes</subject><subject>Conductivity</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Finite element method</subject><subject>Graphene</subject><subject>Load transfer</subject><subject>Mechanical properties</subject><subject>Nanotubes</subject><subject>Sensitivity</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Sound waves</subject><subject>Spatial distribution</subject><subject>Strain</subject><subject>Strain gauges</subject><subject>Stress concentration</subject><subject>Stretchability</subject><subject>Substrates</subject><subject>Tactile</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnTdomF0HWT1jwoueQpFNMWZM16frx39u1nj0NA--9md8j5JxByYA1l0PpTLIxlBWwtgRZAjQHZMFkywsuFTskCwCQRVNV_Jic5DxMq5BMLMjNfTLbVwxIP3HTYUfnJBpMiOPOInUp5mxNyrSPiVpvvrzZ0Dwm4wPNGHJM-ZQc9WaT8exvLsnL3e3z6qFYP90_rq7XheNcjIXltnaKGWhaCVVd933lJOOyQcVNbwTY1vQtFwLbRhmsVYtG1mgtcCUNCL4kF3PuNsX3HeZRD3GXwnRSMzXBNYoxmFRiVv2-nrDX2-TfTPrWDPS-Lz3omVLv-9Ig9dTXZLuabTgRfHhMOjuPwWHnE7pRd9H_H_AD1GZ1XQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Shi, Jidong</creator><creator>Hu, Jing</creator><creator>Dai, Zhaohe</creator><creator>Zhao, Wei</creator><creator>Liu, Peng</creator><creator>Zhao, Lingyu</creator><creator>Guo, Yichuan</creator><creator>Yang, Tingting</creator><creator>Zou, Liang</creator><creator>Jiang, Kaili</creator><creator>Li, Hongbian</creator><creator>Fang, Ying</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9806-3223</orcidid></search><sort><creationdate>201710</creationdate><title>Graphene welded carbon nanotube crossbars for biaxial strain sensors</title><author>Shi, Jidong ; Hu, Jing ; Dai, Zhaohe ; Zhao, Wei ; Liu, Peng ; Zhao, Lingyu ; Guo, Yichuan ; Yang, Tingting ; Zou, Liang ; Jiang, Kaili ; Li, Hongbian ; Fang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon nanotubes</topic><topic>Conductivity</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Finite element method</topic><topic>Graphene</topic><topic>Load transfer</topic><topic>Mechanical properties</topic><topic>Nanotubes</topic><topic>Sensitivity</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Sound waves</topic><topic>Spatial distribution</topic><topic>Strain</topic><topic>Strain gauges</topic><topic>Stress concentration</topic><topic>Stretchability</topic><topic>Substrates</topic><topic>Tactile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jidong</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Dai, Zhaohe</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Zhao, Lingyu</creatorcontrib><creatorcontrib>Guo, Yichuan</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zou, Liang</creatorcontrib><creatorcontrib>Jiang, Kaili</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jidong</au><au>Hu, Jing</au><au>Dai, Zhaohe</au><au>Zhao, Wei</au><au>Liu, Peng</au><au>Zhao, Lingyu</au><au>Guo, Yichuan</au><au>Yang, Tingting</au><au>Zou, Liang</au><au>Jiang, Kaili</au><au>Li, Hongbian</au><au>Fang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene welded carbon nanotube crossbars for biaxial strain sensors</atitle><jtitle>Carbon (New York)</jtitle><date>2017-10</date><risdate>2017</risdate><volume>123</volume><spage>786</spage><epage>793</epage><pages>786-793</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.08.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9806-3223</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2017-10, Vol.123, p.786-793 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_1962269110 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon nanotubes Conductivity Deformation Deformation mechanisms Finite element method Graphene Load transfer Mechanical properties Nanotubes Sensitivity Sensor arrays Sensors Sound waves Spatial distribution Strain Strain gauges Stress concentration Stretchability Substrates Tactile |
title | Graphene welded carbon nanotube crossbars for biaxial strain sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20welded%20carbon%20nanotube%20crossbars%20for%20biaxial%20strain%20sensors&rft.jtitle=Carbon%20(New%20York)&rft.au=Shi,%20Jidong&rft.date=2017-10&rft.volume=123&rft.spage=786&rft.epage=793&rft.pages=786-793&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.08.006&rft_dat=%3Cproquest_cross%3E1962269110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962269110&rft_id=info:pmid/&rft_els_id=S0008622317307935&rfr_iscdi=true |