Graphene welded carbon nanotube crossbars for biaxial strain sensors

Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-10, Vol.123, p.786-793
Hauptverfasser: Shi, Jidong, Hu, Jing, Dai, Zhaohe, Zhao, Wei, Liu, Peng, Zhao, Lingyu, Guo, Yichuan, Yang, Tingting, Zou, Liang, Jiang, Kaili, Li, Hongbian, Fang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 793
container_issue
container_start_page 786
container_title Carbon (New York)
container_volume 123
creator Shi, Jidong
Hu, Jing
Dai, Zhaohe
Zhao, Wei
Liu, Peng
Zhao, Lingyu
Guo, Yichuan
Yang, Tingting
Zou, Liang
Jiang, Kaili
Li, Hongbian
Fang, Ying
description Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.08.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962269110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317307935</els_id><sourcerecordid>1962269110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnTdomF0HWT1jwoueQpFNMWZM16frx39u1nj0NA--9md8j5JxByYA1l0PpTLIxlBWwtgRZAjQHZMFkywsuFTskCwCQRVNV_Jic5DxMq5BMLMjNfTLbVwxIP3HTYUfnJBpMiOPOInUp5mxNyrSPiVpvvrzZ0Dwm4wPNGHJM-ZQc9WaT8exvLsnL3e3z6qFYP90_rq7XheNcjIXltnaKGWhaCVVd933lJOOyQcVNbwTY1vQtFwLbRhmsVYtG1mgtcCUNCL4kF3PuNsX3HeZRD3GXwnRSMzXBNYoxmFRiVv2-nrDX2-TfTPrWDPS-Lz3omVLv-9Ig9dTXZLuabTgRfHhMOjuPwWHnE7pRd9H_H_AD1GZ1XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962269110</pqid></control><display><type>article</type><title>Graphene welded carbon nanotube crossbars for biaxial strain sensors</title><source>Elsevier ScienceDirect Journals</source><creator>Shi, Jidong ; Hu, Jing ; Dai, Zhaohe ; Zhao, Wei ; Liu, Peng ; Zhao, Lingyu ; Guo, Yichuan ; Yang, Tingting ; Zou, Liang ; Jiang, Kaili ; Li, Hongbian ; Fang, Ying</creator><creatorcontrib>Shi, Jidong ; Hu, Jing ; Dai, Zhaohe ; Zhao, Wei ; Liu, Peng ; Zhao, Lingyu ; Guo, Yichuan ; Yang, Tingting ; Zou, Liang ; Jiang, Kaili ; Li, Hongbian ; Fang, Ying</creatorcontrib><description>Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.08.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon nanotubes ; Conductivity ; Deformation ; Deformation mechanisms ; Finite element method ; Graphene ; Load transfer ; Mechanical properties ; Nanotubes ; Sensitivity ; Sensor arrays ; Sensors ; Sound waves ; Spatial distribution ; Strain ; Strain gauges ; Stress concentration ; Stretchability ; Substrates ; Tactile</subject><ispartof>Carbon (New York), 2017-10, Vol.123, p.786-793</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</citedby><cites>FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</cites><orcidid>0000-0002-9806-3223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317307935$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shi, Jidong</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Dai, Zhaohe</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Zhao, Lingyu</creatorcontrib><creatorcontrib>Guo, Yichuan</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zou, Liang</creatorcontrib><creatorcontrib>Jiang, Kaili</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><title>Graphene welded carbon nanotube crossbars for biaxial strain sensors</title><title>Carbon (New York)</title><description>Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures. [Display omitted]</description><subject>Carbon nanotubes</subject><subject>Conductivity</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Finite element method</subject><subject>Graphene</subject><subject>Load transfer</subject><subject>Mechanical properties</subject><subject>Nanotubes</subject><subject>Sensitivity</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Sound waves</subject><subject>Spatial distribution</subject><subject>Strain</subject><subject>Strain gauges</subject><subject>Stress concentration</subject><subject>Stretchability</subject><subject>Substrates</subject><subject>Tactile</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnTdomF0HWT1jwoueQpFNMWZM16frx39u1nj0NA--9md8j5JxByYA1l0PpTLIxlBWwtgRZAjQHZMFkywsuFTskCwCQRVNV_Jic5DxMq5BMLMjNfTLbVwxIP3HTYUfnJBpMiOPOInUp5mxNyrSPiVpvvrzZ0Dwm4wPNGHJM-ZQc9WaT8exvLsnL3e3z6qFYP90_rq7XheNcjIXltnaKGWhaCVVd933lJOOyQcVNbwTY1vQtFwLbRhmsVYtG1mgtcCUNCL4kF3PuNsX3HeZRD3GXwnRSMzXBNYoxmFRiVv2-nrDX2-TfTPrWDPS-Lz3omVLv-9Ig9dTXZLuabTgRfHhMOjuPwWHnE7pRd9H_H_AD1GZ1XQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Shi, Jidong</creator><creator>Hu, Jing</creator><creator>Dai, Zhaohe</creator><creator>Zhao, Wei</creator><creator>Liu, Peng</creator><creator>Zhao, Lingyu</creator><creator>Guo, Yichuan</creator><creator>Yang, Tingting</creator><creator>Zou, Liang</creator><creator>Jiang, Kaili</creator><creator>Li, Hongbian</creator><creator>Fang, Ying</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9806-3223</orcidid></search><sort><creationdate>201710</creationdate><title>Graphene welded carbon nanotube crossbars for biaxial strain sensors</title><author>Shi, Jidong ; Hu, Jing ; Dai, Zhaohe ; Zhao, Wei ; Liu, Peng ; Zhao, Lingyu ; Guo, Yichuan ; Yang, Tingting ; Zou, Liang ; Jiang, Kaili ; Li, Hongbian ; Fang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b3b5c91a06780255ff2c81386e93afa40b7af7344e769ae597ea85ebb0398a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon nanotubes</topic><topic>Conductivity</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Finite element method</topic><topic>Graphene</topic><topic>Load transfer</topic><topic>Mechanical properties</topic><topic>Nanotubes</topic><topic>Sensitivity</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Sound waves</topic><topic>Spatial distribution</topic><topic>Strain</topic><topic>Strain gauges</topic><topic>Stress concentration</topic><topic>Stretchability</topic><topic>Substrates</topic><topic>Tactile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jidong</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Dai, Zhaohe</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Zhao, Lingyu</creatorcontrib><creatorcontrib>Guo, Yichuan</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Zou, Liang</creatorcontrib><creatorcontrib>Jiang, Kaili</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jidong</au><au>Hu, Jing</au><au>Dai, Zhaohe</au><au>Zhao, Wei</au><au>Liu, Peng</au><au>Zhao, Lingyu</au><au>Guo, Yichuan</au><au>Yang, Tingting</au><au>Zou, Liang</au><au>Jiang, Kaili</au><au>Li, Hongbian</au><au>Fang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene welded carbon nanotube crossbars for biaxial strain sensors</atitle><jtitle>Carbon (New York)</jtitle><date>2017-10</date><risdate>2017</risdate><volume>123</volume><spage>786</spage><epage>793</epage><pages>786-793</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Aligned carbon nanotube (CNT) arrays are promising candidates for strain sensors owing to their scalable preparation and excellent conductivity and stretchability. However, aligned CNT arrays are limited by low strain sensitivity and buckling deformation. In addition, cross-stacked CNT array films layer-by-layer assembled on soft substrates exhibit anisotropic mechanical behavior due to their asymmetric layered structures. In this work, we introduced a chemically hybridized CNT-graphene (G/CNT) film in which CNT crossbars are effectively welded together by graphene. The hybrid films demonstrate enhanced isotropic mechanical properties and strain sensitivity with a gauge factor of ∼3, together with a high stretchability of more than 20%. The enhanced electromechanical properties are attributed to the improved load transfer efficiency among CNTs by graphene hybridization, as confirmed by Finite Element Analysis (FEA). Biaxial strain sensors based on the hybridized G/CNT films have been applied for sensitive detection of both minute vibrations caused by sound waves and large deformations from finger bending. The sensors were further integrated into a tactile sensing array to map the spatial distribution of the surface pressures. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.08.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9806-3223</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-10, Vol.123, p.786-793
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1962269110
source Elsevier ScienceDirect Journals
subjects Carbon nanotubes
Conductivity
Deformation
Deformation mechanisms
Finite element method
Graphene
Load transfer
Mechanical properties
Nanotubes
Sensitivity
Sensor arrays
Sensors
Sound waves
Spatial distribution
Strain
Strain gauges
Stress concentration
Stretchability
Substrates
Tactile
title Graphene welded carbon nanotube crossbars for biaxial strain sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20welded%20carbon%20nanotube%20crossbars%20for%20biaxial%20strain%20sensors&rft.jtitle=Carbon%20(New%20York)&rft.au=Shi,%20Jidong&rft.date=2017-10&rft.volume=123&rft.spage=786&rft.epage=793&rft.pages=786-793&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.08.006&rft_dat=%3Cproquest_cross%3E1962269110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962269110&rft_id=info:pmid/&rft_els_id=S0008622317307935&rfr_iscdi=true