Superhard three-dimensional carbon with metallic conductivity

There has been a long-standing search for 3D metallic, superhard carbon, stable under ambient conditions. Here, we report the discovery of a new 3D orthorhombic phase (denoted C14-diamond below) from first-principles calculations. This allotrope is metallic and superhard and is built from nano-layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-10, Vol.123, p.311-317
Hauptverfasser: Wu, Xiangying, Shi, Xuhan, Yao, Mingguang, Liu, Shijie, Yang, Xigui, Zhu, Luyao, Cui, Tian, Liu, Bingbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue
container_start_page 311
container_title Carbon (New York)
container_volume 123
creator Wu, Xiangying
Shi, Xuhan
Yao, Mingguang
Liu, Shijie
Yang, Xigui
Zhu, Luyao
Cui, Tian
Liu, Bingbing
description There has been a long-standing search for 3D metallic, superhard carbon, stable under ambient conditions. Here, we report the discovery of a new 3D orthorhombic phase (denoted C14-diamond below) from first-principles calculations. This allotrope is metallic and superhard and is built from nano-layered sp3 carbon with the cubic diamond structure, connected by proper sp2-bonded ethene-type CC links. This unique configuration of sp2 carbons makes C14-diamond conductive and allows one-dimensional electronic conduction along the c-axis. The high hardness of C14-diamond is further confirmed by its higher density compared with other metallic carbon allotropes. It is dynamically stable and more favorable than most other theoretically predicted carbons in energy. Interestingly, the simulated x-ray diffraction pattern of C14-diamond is similar to that of the experimentally reported while yet unresolved carbon phase obtained by shock-compression of tetracyanoethylene (TCE) powder, indicating that it could be a potential candidate for this carbon phase. We further propose a possible transition process from TCE to C14-diamond, suggesting that conductive superhard material might be synthesized by this way. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.07.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962250787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317307170</els_id><sourcerecordid>1962250787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1bdc2eae091502ce6bcc7f559cfd31a25af5da228c164df41cacff17b8371b6f3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4KnlszSfqxBwVZ_IIFD-o5pJOETem2a5Ku-N-bpZ6FB8PAvMf8HiHXQAugUN12BSrfjkPBKNQFTeLihCygqXnOmxWckgWltMkrxvg5uQihS6toQCzI3fu0N36rvM7i1huTa7czQ3DjoPpsTs2-XdxmOxNV3zvMcBz0hNEdXPy5JGdW9cFc_c0l-Xx6_Fi_5Ju359f1wyZHzkXModXIjDJ0BSVlaKoWsbZluUKrOShWKltqxViDUAltBaBCa6FuG15DW1m-JDdz7t6PX5MJUXbj5NOLQcIqUZW0TqxLIuYr9GMI3li5926n_I8EKo9FyU7OSPJYlKRJXCTb_WwzieDgjJcBnRnQaOcNRqlH93_AL5oodIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962250787</pqid></control><display><type>article</type><title>Superhard three-dimensional carbon with metallic conductivity</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Xiangying ; Shi, Xuhan ; Yao, Mingguang ; Liu, Shijie ; Yang, Xigui ; Zhu, Luyao ; Cui, Tian ; Liu, Bingbing</creator><creatorcontrib>Wu, Xiangying ; Shi, Xuhan ; Yao, Mingguang ; Liu, Shijie ; Yang, Xigui ; Zhu, Luyao ; Cui, Tian ; Liu, Bingbing</creatorcontrib><description>There has been a long-standing search for 3D metallic, superhard carbon, stable under ambient conditions. Here, we report the discovery of a new 3D orthorhombic phase (denoted C14-diamond below) from first-principles calculations. This allotrope is metallic and superhard and is built from nano-layered sp3 carbon with the cubic diamond structure, connected by proper sp2-bonded ethene-type CC links. This unique configuration of sp2 carbons makes C14-diamond conductive and allows one-dimensional electronic conduction along the c-axis. The high hardness of C14-diamond is further confirmed by its higher density compared with other metallic carbon allotropes. It is dynamically stable and more favorable than most other theoretically predicted carbons in energy. Interestingly, the simulated x-ray diffraction pattern of C14-diamond is similar to that of the experimentally reported while yet unresolved carbon phase obtained by shock-compression of tetracyanoethylene (TCE) powder, indicating that it could be a potential candidate for this carbon phase. We further propose a possible transition process from TCE to C14-diamond, suggesting that conductive superhard material might be synthesized by this way. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.07.034</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Allotropes ; Allotropy ; Carbon ; Conductivity ; Diamonds ; Diffraction patterns ; Ethene ; Metals ; Orthorhombic phase ; Studies</subject><ispartof>Carbon (New York), 2017-10, Vol.123, p.311-317</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1bdc2eae091502ce6bcc7f559cfd31a25af5da228c164df41cacff17b8371b6f3</citedby><cites>FETCH-LOGICAL-c334t-1bdc2eae091502ce6bcc7f559cfd31a25af5da228c164df41cacff17b8371b6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317307170$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wu, Xiangying</creatorcontrib><creatorcontrib>Shi, Xuhan</creatorcontrib><creatorcontrib>Yao, Mingguang</creatorcontrib><creatorcontrib>Liu, Shijie</creatorcontrib><creatorcontrib>Yang, Xigui</creatorcontrib><creatorcontrib>Zhu, Luyao</creatorcontrib><creatorcontrib>Cui, Tian</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><title>Superhard three-dimensional carbon with metallic conductivity</title><title>Carbon (New York)</title><description>There has been a long-standing search for 3D metallic, superhard carbon, stable under ambient conditions. Here, we report the discovery of a new 3D orthorhombic phase (denoted C14-diamond below) from first-principles calculations. This allotrope is metallic and superhard and is built from nano-layered sp3 carbon with the cubic diamond structure, connected by proper sp2-bonded ethene-type CC links. This unique configuration of sp2 carbons makes C14-diamond conductive and allows one-dimensional electronic conduction along the c-axis. The high hardness of C14-diamond is further confirmed by its higher density compared with other metallic carbon allotropes. It is dynamically stable and more favorable than most other theoretically predicted carbons in energy. Interestingly, the simulated x-ray diffraction pattern of C14-diamond is similar to that of the experimentally reported while yet unresolved carbon phase obtained by shock-compression of tetracyanoethylene (TCE) powder, indicating that it could be a potential candidate for this carbon phase. We further propose a possible transition process from TCE to C14-diamond, suggesting that conductive superhard material might be synthesized by this way. [Display omitted]</description><subject>Allotropes</subject><subject>Allotropy</subject><subject>Carbon</subject><subject>Conductivity</subject><subject>Diamonds</subject><subject>Diffraction patterns</subject><subject>Ethene</subject><subject>Metals</subject><subject>Orthorhombic phase</subject><subject>Studies</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4KnlszSfqxBwVZ_IIFD-o5pJOETem2a5Ku-N-bpZ6FB8PAvMf8HiHXQAugUN12BSrfjkPBKNQFTeLihCygqXnOmxWckgWltMkrxvg5uQihS6toQCzI3fu0N36rvM7i1huTa7czQ3DjoPpsTs2-XdxmOxNV3zvMcBz0hNEdXPy5JGdW9cFc_c0l-Xx6_Fi_5Ju359f1wyZHzkXModXIjDJ0BSVlaKoWsbZluUKrOShWKltqxViDUAltBaBCa6FuG15DW1m-JDdz7t6PX5MJUXbj5NOLQcIqUZW0TqxLIuYr9GMI3li5926n_I8EKo9FyU7OSPJYlKRJXCTb_WwzieDgjJcBnRnQaOcNRqlH93_AL5oodIU</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Wu, Xiangying</creator><creator>Shi, Xuhan</creator><creator>Yao, Mingguang</creator><creator>Liu, Shijie</creator><creator>Yang, Xigui</creator><creator>Zhu, Luyao</creator><creator>Cui, Tian</creator><creator>Liu, Bingbing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201710</creationdate><title>Superhard three-dimensional carbon with metallic conductivity</title><author>Wu, Xiangying ; Shi, Xuhan ; Yao, Mingguang ; Liu, Shijie ; Yang, Xigui ; Zhu, Luyao ; Cui, Tian ; Liu, Bingbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1bdc2eae091502ce6bcc7f559cfd31a25af5da228c164df41cacff17b8371b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Allotropes</topic><topic>Allotropy</topic><topic>Carbon</topic><topic>Conductivity</topic><topic>Diamonds</topic><topic>Diffraction patterns</topic><topic>Ethene</topic><topic>Metals</topic><topic>Orthorhombic phase</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiangying</creatorcontrib><creatorcontrib>Shi, Xuhan</creatorcontrib><creatorcontrib>Yao, Mingguang</creatorcontrib><creatorcontrib>Liu, Shijie</creatorcontrib><creatorcontrib>Yang, Xigui</creatorcontrib><creatorcontrib>Zhu, Luyao</creatorcontrib><creatorcontrib>Cui, Tian</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiangying</au><au>Shi, Xuhan</au><au>Yao, Mingguang</au><au>Liu, Shijie</au><au>Yang, Xigui</au><au>Zhu, Luyao</au><au>Cui, Tian</au><au>Liu, Bingbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superhard three-dimensional carbon with metallic conductivity</atitle><jtitle>Carbon (New York)</jtitle><date>2017-10</date><risdate>2017</risdate><volume>123</volume><spage>311</spage><epage>317</epage><pages>311-317</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>There has been a long-standing search for 3D metallic, superhard carbon, stable under ambient conditions. Here, we report the discovery of a new 3D orthorhombic phase (denoted C14-diamond below) from first-principles calculations. This allotrope is metallic and superhard and is built from nano-layered sp3 carbon with the cubic diamond structure, connected by proper sp2-bonded ethene-type CC links. This unique configuration of sp2 carbons makes C14-diamond conductive and allows one-dimensional electronic conduction along the c-axis. The high hardness of C14-diamond is further confirmed by its higher density compared with other metallic carbon allotropes. It is dynamically stable and more favorable than most other theoretically predicted carbons in energy. Interestingly, the simulated x-ray diffraction pattern of C14-diamond is similar to that of the experimentally reported while yet unresolved carbon phase obtained by shock-compression of tetracyanoethylene (TCE) powder, indicating that it could be a potential candidate for this carbon phase. We further propose a possible transition process from TCE to C14-diamond, suggesting that conductive superhard material might be synthesized by this way. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.07.034</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-10, Vol.123, p.311-317
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1962250787
source Elsevier ScienceDirect Journals
subjects Allotropes
Allotropy
Carbon
Conductivity
Diamonds
Diffraction patterns
Ethene
Metals
Orthorhombic phase
Studies
title Superhard three-dimensional carbon with metallic conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superhard%20three-dimensional%20carbon%20with%20metallic%20conductivity&rft.jtitle=Carbon%20(New%20York)&rft.au=Wu,%20Xiangying&rft.date=2017-10&rft.volume=123&rft.spage=311&rft.epage=317&rft.pages=311-317&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.07.034&rft_dat=%3Cproquest_cross%3E1962250787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962250787&rft_id=info:pmid/&rft_els_id=S0008622317307170&rfr_iscdi=true