Ab initio triangle maps for new insights into the crystal wave functions of carbon allotropes

Recent years have brought forth an ever-increasing number of predicted carbon allotropes. In the spirit of Heimann's original categorization scheme for carbon-only materials, we here report an ab initio method to create triangular (ternary) maps based on their valence-orbital mixing. These maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-10, Vol.123, p.708-716
Hauptverfasser: Esser, Marc, Dronskowski, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue
container_start_page 708
container_title Carbon (New York)
container_volume 123
creator Esser, Marc
Dronskowski, Richard
description Recent years have brought forth an ever-increasing number of predicted carbon allotropes. In the spirit of Heimann's original categorization scheme for carbon-only materials, we here report an ab initio method to create triangular (ternary) maps based on their valence-orbital mixing. These maps group together allotropes of similar electronic structure––and, hence, physical properties––and can thus aid in finding allotropes with specific features. Moreover, these maps can be used to classify all carbon allotropes according to their bonding nature. We suggest to extract insights about the composition of the crystal wave function as emerging from individual atomic orbitals. To do so, we develop a way to visualize the entire linear-coefficient space of an extended LCAO wave function, also based on ternary diagrams. This scheme yields that lower-level mixed states always get realized and filled first before higher-level mixed states can be created, a consequence of symmetry breaking of canonical orbitals within the solid state. For the specific case of graphite, there is more sp mixing than in sp2 mixing present, while diamond exhibits more sp and sp2 mixing than sp3 mixing. Once higher-level mixing is realized, however, these levels are more significant for the allotropes' properties than the lower-level ones. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.08.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962250039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317307960</els_id><sourcerecordid>1962250039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-59f5aa58cfcbbefd7c7358009953d75e62ca1dd3f42ab1e4aac8be5b468e2dda3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4DDwHPuyab_chehFL8goIXPUrIZidtlm1Sk7Sl_96U9expZpj33sx7CN1TklNC68chV9J3zuYFoU1OeE4ouUAzyhuWMd7SSzQjhPCsLgp2jW5CGNJYclrO0Peiw8aaaByO3ki7HgFv5S5g7Ty2cEzLYNabGFITE2YDWPlTiHLER3kArPdWJbIN2Gk8fYHlOLro3Q7CLbrScgxw91fn6Ovl-XP5lq0-Xt-Xi1WmGCtjVrW6krLiSquuA903qmEVJ6RtK9Y3FdSFkrTvmS4L2VEopVS8g6oraw5F30s2Rw-T7s67nz2EKAa39zadFLRNritCWJtQ5YRS3oXgQYudN1vpT4IScQ5SDGKyIM5BCsJFCjLRniYaJAcHA14EZcAq6I0HFUXvzP8Cv5qJgBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962250039</pqid></control><display><type>article</type><title>Ab initio triangle maps for new insights into the crystal wave functions of carbon allotropes</title><source>Elsevier ScienceDirect Journals</source><creator>Esser, Marc ; Dronskowski, Richard</creator><creatorcontrib>Esser, Marc ; Dronskowski, Richard</creatorcontrib><description>Recent years have brought forth an ever-increasing number of predicted carbon allotropes. In the spirit of Heimann's original categorization scheme for carbon-only materials, we here report an ab initio method to create triangular (ternary) maps based on their valence-orbital mixing. These maps group together allotropes of similar electronic structure––and, hence, physical properties––and can thus aid in finding allotropes with specific features. Moreover, these maps can be used to classify all carbon allotropes according to their bonding nature. We suggest to extract insights about the composition of the crystal wave function as emerging from individual atomic orbitals. To do so, we develop a way to visualize the entire linear-coefficient space of an extended LCAO wave function, also based on ternary diagrams. This scheme yields that lower-level mixed states always get realized and filled first before higher-level mixed states can be created, a consequence of symmetry breaking of canonical orbitals within the solid state. For the specific case of graphite, there is more sp mixing than in sp2 mixing present, while diamond exhibits more sp and sp2 mixing than sp3 mixing. Once higher-level mixing is realized, however, these levels are more significant for the allotropes' properties than the lower-level ones. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.08.010</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Allotropes ; Allotropy ; Atomic structure ; Broken symmetry ; Carbon ; Diamonds ; Electronic structure ; Graphite ; Orbitals ; Physical properties ; Studies ; Wave functions</subject><ispartof>Carbon (New York), 2017-10, Vol.123, p.708-716</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-59f5aa58cfcbbefd7c7358009953d75e62ca1dd3f42ab1e4aac8be5b468e2dda3</citedby><cites>FETCH-LOGICAL-c334t-59f5aa58cfcbbefd7c7358009953d75e62ca1dd3f42ab1e4aac8be5b468e2dda3</cites><orcidid>0000-0002-1925-9624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.08.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Esser, Marc</creatorcontrib><creatorcontrib>Dronskowski, Richard</creatorcontrib><title>Ab initio triangle maps for new insights into the crystal wave functions of carbon allotropes</title><title>Carbon (New York)</title><description>Recent years have brought forth an ever-increasing number of predicted carbon allotropes. In the spirit of Heimann's original categorization scheme for carbon-only materials, we here report an ab initio method to create triangular (ternary) maps based on their valence-orbital mixing. These maps group together allotropes of similar electronic structure––and, hence, physical properties––and can thus aid in finding allotropes with specific features. Moreover, these maps can be used to classify all carbon allotropes according to their bonding nature. We suggest to extract insights about the composition of the crystal wave function as emerging from individual atomic orbitals. To do so, we develop a way to visualize the entire linear-coefficient space of an extended LCAO wave function, also based on ternary diagrams. This scheme yields that lower-level mixed states always get realized and filled first before higher-level mixed states can be created, a consequence of symmetry breaking of canonical orbitals within the solid state. For the specific case of graphite, there is more sp mixing than in sp2 mixing present, while diamond exhibits more sp and sp2 mixing than sp3 mixing. Once higher-level mixing is realized, however, these levels are more significant for the allotropes' properties than the lower-level ones. [Display omitted]</description><subject>Allotropes</subject><subject>Allotropy</subject><subject>Atomic structure</subject><subject>Broken symmetry</subject><subject>Carbon</subject><subject>Diamonds</subject><subject>Electronic structure</subject><subject>Graphite</subject><subject>Orbitals</subject><subject>Physical properties</subject><subject>Studies</subject><subject>Wave functions</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4DDwHPuyab_chehFL8goIXPUrIZidtlm1Sk7Sl_96U9expZpj33sx7CN1TklNC68chV9J3zuYFoU1OeE4ouUAzyhuWMd7SSzQjhPCsLgp2jW5CGNJYclrO0Peiw8aaaByO3ki7HgFv5S5g7Ty2cEzLYNabGFITE2YDWPlTiHLER3kArPdWJbIN2Gk8fYHlOLro3Q7CLbrScgxw91fn6Ovl-XP5lq0-Xt-Xi1WmGCtjVrW6krLiSquuA903qmEVJ6RtK9Y3FdSFkrTvmS4L2VEopVS8g6oraw5F30s2Rw-T7s67nz2EKAa39zadFLRNritCWJtQ5YRS3oXgQYudN1vpT4IScQ5SDGKyIM5BCsJFCjLRniYaJAcHA14EZcAq6I0HFUXvzP8Cv5qJgBM</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Esser, Marc</creator><creator>Dronskowski, Richard</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1925-9624</orcidid></search><sort><creationdate>201710</creationdate><title>Ab initio triangle maps for new insights into the crystal wave functions of carbon allotropes</title><author>Esser, Marc ; Dronskowski, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-59f5aa58cfcbbefd7c7358009953d75e62ca1dd3f42ab1e4aac8be5b468e2dda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Allotropes</topic><topic>Allotropy</topic><topic>Atomic structure</topic><topic>Broken symmetry</topic><topic>Carbon</topic><topic>Diamonds</topic><topic>Electronic structure</topic><topic>Graphite</topic><topic>Orbitals</topic><topic>Physical properties</topic><topic>Studies</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esser, Marc</creatorcontrib><creatorcontrib>Dronskowski, Richard</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esser, Marc</au><au>Dronskowski, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio triangle maps for new insights into the crystal wave functions of carbon allotropes</atitle><jtitle>Carbon (New York)</jtitle><date>2017-10</date><risdate>2017</risdate><volume>123</volume><spage>708</spage><epage>716</epage><pages>708-716</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Recent years have brought forth an ever-increasing number of predicted carbon allotropes. In the spirit of Heimann's original categorization scheme for carbon-only materials, we here report an ab initio method to create triangular (ternary) maps based on their valence-orbital mixing. These maps group together allotropes of similar electronic structure––and, hence, physical properties––and can thus aid in finding allotropes with specific features. Moreover, these maps can be used to classify all carbon allotropes according to their bonding nature. We suggest to extract insights about the composition of the crystal wave function as emerging from individual atomic orbitals. To do so, we develop a way to visualize the entire linear-coefficient space of an extended LCAO wave function, also based on ternary diagrams. This scheme yields that lower-level mixed states always get realized and filled first before higher-level mixed states can be created, a consequence of symmetry breaking of canonical orbitals within the solid state. For the specific case of graphite, there is more sp mixing than in sp2 mixing present, while diamond exhibits more sp and sp2 mixing than sp3 mixing. Once higher-level mixing is realized, however, these levels are more significant for the allotropes' properties than the lower-level ones. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.08.010</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1925-9624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-10, Vol.123, p.708-716
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1962250039
source Elsevier ScienceDirect Journals
subjects Allotropes
Allotropy
Atomic structure
Broken symmetry
Carbon
Diamonds
Electronic structure
Graphite
Orbitals
Physical properties
Studies
Wave functions
title Ab initio triangle maps for new insights into the crystal wave functions of carbon allotropes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20triangle%20maps%20for%20new%20insights%20into%20the%20crystal%20wave%20functions%20of%20carbon%20allotropes&rft.jtitle=Carbon%20(New%20York)&rft.au=Esser,%20Marc&rft.date=2017-10&rft.volume=123&rft.spage=708&rft.epage=716&rft.pages=708-716&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.08.010&rft_dat=%3Cproquest_cross%3E1962250039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962250039&rft_id=info:pmid/&rft_els_id=S0008622317307960&rfr_iscdi=true