Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass
Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passi...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2017-11, Vol.5 (11), p.2086-2099 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2099 |
---|---|
container_issue | 11 |
container_start_page | 2086 |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 5 |
creator | Viereck, Sebastian Keller, Jonas Haselbacher, Andreas Jovanovic, Zoran R. Steinfeld, Aldo |
description | Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs.
solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs. |
doi_str_mv | 10.1002/ente.201700405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962132971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962132971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEhV0ZbbEnHJ27DQeSxXaShUMlNm6JnabKomLnQryAjw3LkVlZLrT6fv-k_4ouqMwogDsQbedHjGgYwAO4iIaMCp5zJlML897ll1HQ-93AEBBJAKSQfQ18V573wSfWEPmGjuSfxZbbDfaeWKsI91Wk0WI3zjsKtsesalti2CEgy7Jq63RkbzVbtOTqu3sjzHFDuu-qwoy70tnw8k1WJMZ-spUxTnpsbINen8bXRmsvR7-zpvo7SlfTefx8mW2mE6WcZFILuKEj9fpmhptTAoCuBApZKlJGIqSYoEojURD12UpRVaalAZOAnLOoeQSWXIT3Z9y986-H7Tv1M4eXBteKipTRhMmxzRQoxNVOOu900btXdWg6xUFdaxbHetW57qDIE_CR1Xr_h9a5c-r_M_9Bng_hfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962132971</pqid></control><display><type>article</type><title>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</title><source>Wiley Journals</source><creator>Viereck, Sebastian ; Keller, Jonas ; Haselbacher, Andreas ; Jovanovic, Zoran R. ; Steinfeld, Aldo</creator><creatorcontrib>Viereck, Sebastian ; Keller, Jonas ; Haselbacher, Andreas ; Jovanovic, Zoran R. ; Steinfeld, Aldo</creatorcontrib><description>Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs.
solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201700405</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>biomass ; Biomass energy production ; Catalysis ; computational fluid dynamics ; Computer simulation ; concentrated solar power ; Energy consumption ; Energy storage ; Energy transfer ; Fluidized beds ; Gasification ; Heat ; heat exchanger ; Heat exchangers ; Irradiation ; Porous media ; Salts ; Solar energy ; Temperature ; Thermal energy ; Tubes</subject><ispartof>Energy technology (Weinheim, Germany), 2017-11, Vol.5 (11), p.2086-2099</ispartof><rights>2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</citedby><cites>FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</cites><orcidid>0000-0001-5798-4504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201700405$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201700405$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Viereck, Sebastian</creatorcontrib><creatorcontrib>Keller, Jonas</creatorcontrib><creatorcontrib>Haselbacher, Andreas</creatorcontrib><creatorcontrib>Jovanovic, Zoran R.</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><title>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</title><title>Energy technology (Weinheim, Germany)</title><description>Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs.
solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs.</description><subject>biomass</subject><subject>Biomass energy production</subject><subject>Catalysis</subject><subject>computational fluid dynamics</subject><subject>Computer simulation</subject><subject>concentrated solar power</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Energy transfer</subject><subject>Fluidized beds</subject><subject>Gasification</subject><subject>Heat</subject><subject>heat exchanger</subject><subject>Heat exchangers</subject><subject>Irradiation</subject><subject>Porous media</subject><subject>Salts</subject><subject>Solar energy</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Tubes</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhiMEEhV0ZbbEnHJ27DQeSxXaShUMlNm6JnabKomLnQryAjw3LkVlZLrT6fv-k_4ouqMwogDsQbedHjGgYwAO4iIaMCp5zJlML897ll1HQ-93AEBBJAKSQfQ18V573wSfWEPmGjuSfxZbbDfaeWKsI91Wk0WI3zjsKtsesalti2CEgy7Jq63RkbzVbtOTqu3sjzHFDuu-qwoy70tnw8k1WJMZ-spUxTnpsbINen8bXRmsvR7-zpvo7SlfTefx8mW2mE6WcZFILuKEj9fpmhptTAoCuBApZKlJGIqSYoEojURD12UpRVaalAZOAnLOoeQSWXIT3Z9y986-H7Tv1M4eXBteKipTRhMmxzRQoxNVOOu900btXdWg6xUFdaxbHetW57qDIE_CR1Xr_h9a5c-r_M_9Bng_hfw</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Viereck, Sebastian</creator><creator>Keller, Jonas</creator><creator>Haselbacher, Andreas</creator><creator>Jovanovic, Zoran R.</creator><creator>Steinfeld, Aldo</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5798-4504</orcidid></search><sort><creationdate>201711</creationdate><title>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</title><author>Viereck, Sebastian ; Keller, Jonas ; Haselbacher, Andreas ; Jovanovic, Zoran R. ; Steinfeld, Aldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>biomass</topic><topic>Biomass energy production</topic><topic>Catalysis</topic><topic>computational fluid dynamics</topic><topic>Computer simulation</topic><topic>concentrated solar power</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Energy transfer</topic><topic>Fluidized beds</topic><topic>Gasification</topic><topic>Heat</topic><topic>heat exchanger</topic><topic>Heat exchangers</topic><topic>Irradiation</topic><topic>Porous media</topic><topic>Salts</topic><topic>Solar energy</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viereck, Sebastian</creatorcontrib><creatorcontrib>Keller, Jonas</creatorcontrib><creatorcontrib>Haselbacher, Andreas</creatorcontrib><creatorcontrib>Jovanovic, Zoran R.</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viereck, Sebastian</au><au>Keller, Jonas</au><au>Haselbacher, Andreas</au><au>Jovanovic, Zoran R.</au><au>Steinfeld, Aldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2017-11</date><risdate>2017</risdate><volume>5</volume><issue>11</issue><spage>2086</spage><epage>2099</epage><pages>2086-2099</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs.
solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201700405</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5798-4504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2017-11, Vol.5 (11), p.2086-2099 |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_1962132971 |
source | Wiley Journals |
subjects | biomass Biomass energy production Catalysis computational fluid dynamics Computer simulation concentrated solar power Energy consumption Energy storage Energy transfer Fluidized beds Gasification Heat heat exchanger Heat exchangers Irradiation Porous media Salts Solar energy Temperature Thermal energy Tubes |
title | Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Heat%20Exchangers%20for%20the%20Integration%20of%20Concentrated%20Solar%20Energy%20into%20the%20Catalytic%20Hydrothermal%20Gasification%20of%20Biomass&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Viereck,%20Sebastian&rft.date=2017-11&rft.volume=5&rft.issue=11&rft.spage=2086&rft.epage=2099&rft.pages=2086-2099&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201700405&rft_dat=%3Cproquest_cross%3E1962132971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962132971&rft_id=info:pmid/&rfr_iscdi=true |