Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass

Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2017-11, Vol.5 (11), p.2086-2099
Hauptverfasser: Viereck, Sebastian, Keller, Jonas, Haselbacher, Andreas, Jovanovic, Zoran R., Steinfeld, Aldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2099
container_issue 11
container_start_page 2086
container_title Energy technology (Weinheim, Germany)
container_volume 5
creator Viereck, Sebastian
Keller, Jonas
Haselbacher, Andreas
Jovanovic, Zoran R.
Steinfeld, Aldo
description Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs. solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs.
doi_str_mv 10.1002/ente.201700405
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962132971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962132971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEhV0ZbbEnHJ27DQeSxXaShUMlNm6JnabKomLnQryAjw3LkVlZLrT6fv-k_4ouqMwogDsQbedHjGgYwAO4iIaMCp5zJlML897ll1HQ-93AEBBJAKSQfQ18V573wSfWEPmGjuSfxZbbDfaeWKsI91Wk0WI3zjsKtsesalti2CEgy7Jq63RkbzVbtOTqu3sjzHFDuu-qwoy70tnw8k1WJMZ-spUxTnpsbINen8bXRmsvR7-zpvo7SlfTefx8mW2mE6WcZFILuKEj9fpmhptTAoCuBApZKlJGIqSYoEojURD12UpRVaalAZOAnLOoeQSWXIT3Z9y986-H7Tv1M4eXBteKipTRhMmxzRQoxNVOOu900btXdWg6xUFdaxbHetW57qDIE_CR1Xr_h9a5c-r_M_9Bng_hfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962132971</pqid></control><display><type>article</type><title>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</title><source>Wiley Journals</source><creator>Viereck, Sebastian ; Keller, Jonas ; Haselbacher, Andreas ; Jovanovic, Zoran R. ; Steinfeld, Aldo</creator><creatorcontrib>Viereck, Sebastian ; Keller, Jonas ; Haselbacher, Andreas ; Jovanovic, Zoran R. ; Steinfeld, Aldo</creatorcontrib><description>Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs. solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201700405</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>biomass ; Biomass energy production ; Catalysis ; computational fluid dynamics ; Computer simulation ; concentrated solar power ; Energy consumption ; Energy storage ; Energy transfer ; Fluidized beds ; Gasification ; Heat ; heat exchanger ; Heat exchangers ; Irradiation ; Porous media ; Salts ; Solar energy ; Temperature ; Thermal energy ; Tubes</subject><ispartof>Energy technology (Weinheim, Germany), 2017-11, Vol.5 (11), p.2086-2099</ispartof><rights>2017 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</citedby><cites>FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</cites><orcidid>0000-0001-5798-4504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201700405$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201700405$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Viereck, Sebastian</creatorcontrib><creatorcontrib>Keller, Jonas</creatorcontrib><creatorcontrib>Haselbacher, Andreas</creatorcontrib><creatorcontrib>Jovanovic, Zoran R.</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><title>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</title><title>Energy technology (Weinheim, Germany)</title><description>Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs. solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs.</description><subject>biomass</subject><subject>Biomass energy production</subject><subject>Catalysis</subject><subject>computational fluid dynamics</subject><subject>Computer simulation</subject><subject>concentrated solar power</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Energy transfer</subject><subject>Fluidized beds</subject><subject>Gasification</subject><subject>Heat</subject><subject>heat exchanger</subject><subject>Heat exchangers</subject><subject>Irradiation</subject><subject>Porous media</subject><subject>Salts</subject><subject>Solar energy</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Tubes</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhiMEEhV0ZbbEnHJ27DQeSxXaShUMlNm6JnabKomLnQryAjw3LkVlZLrT6fv-k_4ouqMwogDsQbedHjGgYwAO4iIaMCp5zJlML897ll1HQ-93AEBBJAKSQfQ18V573wSfWEPmGjuSfxZbbDfaeWKsI91Wk0WI3zjsKtsesalti2CEgy7Jq63RkbzVbtOTqu3sjzHFDuu-qwoy70tnw8k1WJMZ-spUxTnpsbINen8bXRmsvR7-zpvo7SlfTefx8mW2mE6WcZFILuKEj9fpmhptTAoCuBApZKlJGIqSYoEojURD12UpRVaalAZOAnLOoeQSWXIT3Z9y986-H7Tv1M4eXBteKipTRhMmxzRQoxNVOOu900btXdWg6xUFdaxbHetW57qDIE_CR1Xr_h9a5c-r_M_9Bng_hfw</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Viereck, Sebastian</creator><creator>Keller, Jonas</creator><creator>Haselbacher, Andreas</creator><creator>Jovanovic, Zoran R.</creator><creator>Steinfeld, Aldo</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5798-4504</orcidid></search><sort><creationdate>201711</creationdate><title>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</title><author>Viereck, Sebastian ; Keller, Jonas ; Haselbacher, Andreas ; Jovanovic, Zoran R. ; Steinfeld, Aldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-347b6b1feff60504556086f32a5d1acaa9f9af1bdd958df61ff690a4440d49a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>biomass</topic><topic>Biomass energy production</topic><topic>Catalysis</topic><topic>computational fluid dynamics</topic><topic>Computer simulation</topic><topic>concentrated solar power</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Energy transfer</topic><topic>Fluidized beds</topic><topic>Gasification</topic><topic>Heat</topic><topic>heat exchanger</topic><topic>Heat exchangers</topic><topic>Irradiation</topic><topic>Porous media</topic><topic>Salts</topic><topic>Solar energy</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viereck, Sebastian</creatorcontrib><creatorcontrib>Keller, Jonas</creatorcontrib><creatorcontrib>Haselbacher, Andreas</creatorcontrib><creatorcontrib>Jovanovic, Zoran R.</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viereck, Sebastian</au><au>Keller, Jonas</au><au>Haselbacher, Andreas</au><au>Jovanovic, Zoran R.</au><au>Steinfeld, Aldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2017-11</date><risdate>2017</risdate><volume>5</volume><issue>11</issue><spage>2086</spage><epage>2099</epage><pages>2086-2099</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Using concentrated solar energy to power a hydrothermal gasification (HTG) of biomass requires thermal energy storage (TES) to compensate for the inherent intermittence of solar irradiation. The energy transfer from the TES to the HTG process is accomplished through a heat‐transfer fluid (HTF) passing through a heat exchanger (HX) incorporated into the salt‐separation step of the HTG process. The HX performance determines the temperature profile inside the salt separator, thereby influencing the removal of the salts from the feedstock. In this work, we compare the performances of three HX types based on exploiting fluidized beds, porous media, and axially finned tubes. The effect of the HX configuration on the temperature profile inside the salt separator is assessed through CFD simulations considering pure water as the model feed to the separator. We find that all considered HX types could provide the desired temperature profile within the separator. However, the estimate for the power required to pump the HTF through the fluidized‐bed HX is roughly two orders of magnitude higher than those for the axially finned tubular and porous‐media HXs. solarHTG: We assess three types of heat exchangers (HX) based on fluidized‐beds, porous media and axially finned tubes to transfer concentrated solar power through a heat‐transfer fluid (HTF) to a hydrothermal gasification process. We demonstrate that all HX types are suitable; however, the power required to pump the HTF through the fluidized‐bed HXs is roughly two orders of magnitude higher than for the porous‐media and axially finned tube HXs.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201700405</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5798-4504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2017-11, Vol.5 (11), p.2086-2099
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_1962132971
source Wiley Journals
subjects biomass
Biomass energy production
Catalysis
computational fluid dynamics
Computer simulation
concentrated solar power
Energy consumption
Energy storage
Energy transfer
Fluidized beds
Gasification
Heat
heat exchanger
Heat exchangers
Irradiation
Porous media
Salts
Solar energy
Temperature
Thermal energy
Tubes
title Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Heat%20Exchangers%20for%20the%20Integration%20of%20Concentrated%20Solar%20Energy%20into%20the%20Catalytic%20Hydrothermal%20Gasification%20of%20Biomass&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Viereck,%20Sebastian&rft.date=2017-11&rft.volume=5&rft.issue=11&rft.spage=2086&rft.epage=2099&rft.pages=2086-2099&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201700405&rft_dat=%3Cproquest_cross%3E1962132971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962132971&rft_id=info:pmid/&rfr_iscdi=true