Three-dimensional particle tracking velocimetry using dynamic vision sensors
A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of...
Gespeichert in:
Veröffentlicht in: | Experiments in fluids 2017-12, Vol.58 (12), p.1-7, Article 165 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Experiments in fluids |
container_volume | 58 |
creator | Borer, D. Delbruck, T. Rösgen, T. |
description | A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information. |
doi_str_mv | 10.1007/s00348-017-2452-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961835320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961835320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</originalsourceid><addsrcrecordid>eNp1kE1LxDAQQIMouK7-AG8Fz9FMPpujLH7Bgpf1HNI0WbN22zXpLvTf21IPXjwNDO8Nw0PoFsg9EKIeMiGMl5iAwpQLisUZWgBnFAMAP0cLoijDvJT8El3lvCMEhCblAq03n8l7XMe9b3PsWtsUB5v66Bpf9Mm6r9hui5NvOjcSfRqKY5429dDafXTFKU5SkUe5S_kaXQTbZH_zO5fo4_lps3rF6_eXt9XjGjsGsseiKoOVqqqIdsECJaGiwgbKS6WhVloFqZ2sWOBAK1HrwJl3QtYBRM0rytgS3c13D6n7Pvrcm113TOPv2YCWUDLBKBkpmCmXupyTD-aQ4t6mwQAxUzQzRzNjNDNFM2J06OzkkW23Pv25_K_0A0WdcEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961835320</pqid></control><display><type>article</type><title>Three-dimensional particle tracking velocimetry using dynamic vision sensors</title><source>SpringerNature Journals</source><creator>Borer, D. ; Delbruck, T. ; Rösgen, T.</creator><creatorcontrib>Borer, D. ; Delbruck, T. ; Rösgen, T.</creatorcontrib><description>A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-017-2452-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cameras ; Data analysis ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow visualization ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Kalman filters ; Letter ; Particle tracking ; Particle tracking velocimetry ; Sensors ; Software reviews ; Tracers ; Velocity measurement ; Wind tunnels</subject><ispartof>Experiments in fluids, 2017-12, Vol.58 (12), p.1-7, Article 165</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</citedby><cites>FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</cites><orcidid>0000-0003-2702-5876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-017-2452-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-017-2452-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borer, D.</creatorcontrib><creatorcontrib>Delbruck, T.</creatorcontrib><creatorcontrib>Rösgen, T.</creatorcontrib><title>Three-dimensional particle tracking velocimetry using dynamic vision sensors</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.</description><subject>Cameras</subject><subject>Data analysis</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow visualization</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Kalman filters</subject><subject>Letter</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Sensors</subject><subject>Software reviews</subject><subject>Tracers</subject><subject>Velocity measurement</subject><subject>Wind tunnels</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQQIMouK7-AG8Fz9FMPpujLH7Bgpf1HNI0WbN22zXpLvTf21IPXjwNDO8Nw0PoFsg9EKIeMiGMl5iAwpQLisUZWgBnFAMAP0cLoijDvJT8El3lvCMEhCblAq03n8l7XMe9b3PsWtsUB5v66Bpf9Mm6r9hui5NvOjcSfRqKY5429dDafXTFKU5SkUe5S_kaXQTbZH_zO5fo4_lps3rF6_eXt9XjGjsGsseiKoOVqqqIdsECJaGiwgbKS6WhVloFqZ2sWOBAK1HrwJl3QtYBRM0rytgS3c13D6n7Pvrcm113TOPv2YCWUDLBKBkpmCmXupyTD-aQ4t6mwQAxUzQzRzNjNDNFM2J06OzkkW23Pv25_K_0A0WdcEo</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Borer, D.</creator><creator>Delbruck, T.</creator><creator>Rösgen, T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2702-5876</orcidid></search><sort><creationdate>20171201</creationdate><title>Three-dimensional particle tracking velocimetry using dynamic vision sensors</title><author>Borer, D. ; Delbruck, T. ; Rösgen, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cameras</topic><topic>Data analysis</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow visualization</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Kalman filters</topic><topic>Letter</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Sensors</topic><topic>Software reviews</topic><topic>Tracers</topic><topic>Velocity measurement</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borer, D.</creatorcontrib><creatorcontrib>Delbruck, T.</creatorcontrib><creatorcontrib>Rösgen, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borer, D.</au><au>Delbruck, T.</au><au>Rösgen, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional particle tracking velocimetry using dynamic vision sensors</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>58</volume><issue>12</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>165</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-017-2452-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2702-5876</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2017-12, Vol.58 (12), p.1-7, Article 165 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_proquest_journals_1961835320 |
source | SpringerNature Journals |
subjects | Cameras Data analysis Engineering Engineering Fluid Dynamics Engineering Thermodynamics Flow visualization Fluid- and Aerodynamics Heat and Mass Transfer Kalman filters Letter Particle tracking Particle tracking velocimetry Sensors Software reviews Tracers Velocity measurement Wind tunnels |
title | Three-dimensional particle tracking velocimetry using dynamic vision sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20particle%20tracking%20velocimetry%20using%20dynamic%20vision%20sensors&rft.jtitle=Experiments%20in%20fluids&rft.au=Borer,%20D.&rft.date=2017-12-01&rft.volume=58&rft.issue=12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=165&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-017-2452-5&rft_dat=%3Cproquest_cross%3E1961835320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961835320&rft_id=info:pmid/&rfr_iscdi=true |