Three-dimensional particle tracking velocimetry using dynamic vision sensors

A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2017-12, Vol.58 (12), p.1-7, Article 165
Hauptverfasser: Borer, D., Delbruck, T., Rösgen, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 12
container_start_page 1
container_title Experiments in fluids
container_volume 58
creator Borer, D.
Delbruck, T.
Rösgen, T.
description A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.
doi_str_mv 10.1007/s00348-017-2452-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961835320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961835320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</originalsourceid><addsrcrecordid>eNp1kE1LxDAQQIMouK7-AG8Fz9FMPpujLH7Bgpf1HNI0WbN22zXpLvTf21IPXjwNDO8Nw0PoFsg9EKIeMiGMl5iAwpQLisUZWgBnFAMAP0cLoijDvJT8El3lvCMEhCblAq03n8l7XMe9b3PsWtsUB5v66Bpf9Mm6r9hui5NvOjcSfRqKY5429dDafXTFKU5SkUe5S_kaXQTbZH_zO5fo4_lps3rF6_eXt9XjGjsGsseiKoOVqqqIdsECJaGiwgbKS6WhVloFqZ2sWOBAK1HrwJl3QtYBRM0rytgS3c13D6n7Pvrcm113TOPv2YCWUDLBKBkpmCmXupyTD-aQ4t6mwQAxUzQzRzNjNDNFM2J06OzkkW23Pv25_K_0A0WdcEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961835320</pqid></control><display><type>article</type><title>Three-dimensional particle tracking velocimetry using dynamic vision sensors</title><source>SpringerNature Journals</source><creator>Borer, D. ; Delbruck, T. ; Rösgen, T.</creator><creatorcontrib>Borer, D. ; Delbruck, T. ; Rösgen, T.</creatorcontrib><description>A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-017-2452-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cameras ; Data analysis ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow visualization ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Kalman filters ; Letter ; Particle tracking ; Particle tracking velocimetry ; Sensors ; Software reviews ; Tracers ; Velocity measurement ; Wind tunnels</subject><ispartof>Experiments in fluids, 2017-12, Vol.58 (12), p.1-7, Article 165</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</citedby><cites>FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</cites><orcidid>0000-0003-2702-5876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-017-2452-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-017-2452-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borer, D.</creatorcontrib><creatorcontrib>Delbruck, T.</creatorcontrib><creatorcontrib>Rösgen, T.</creatorcontrib><title>Three-dimensional particle tracking velocimetry using dynamic vision sensors</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.</description><subject>Cameras</subject><subject>Data analysis</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow visualization</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Kalman filters</subject><subject>Letter</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Sensors</subject><subject>Software reviews</subject><subject>Tracers</subject><subject>Velocity measurement</subject><subject>Wind tunnels</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQQIMouK7-AG8Fz9FMPpujLH7Bgpf1HNI0WbN22zXpLvTf21IPXjwNDO8Nw0PoFsg9EKIeMiGMl5iAwpQLisUZWgBnFAMAP0cLoijDvJT8El3lvCMEhCblAq03n8l7XMe9b3PsWtsUB5v66Bpf9Mm6r9hui5NvOjcSfRqKY5429dDafXTFKU5SkUe5S_kaXQTbZH_zO5fo4_lps3rF6_eXt9XjGjsGsseiKoOVqqqIdsECJaGiwgbKS6WhVloFqZ2sWOBAK1HrwJl3QtYBRM0rytgS3c13D6n7Pvrcm113TOPv2YCWUDLBKBkpmCmXupyTD-aQ4t6mwQAxUzQzRzNjNDNFM2J06OzkkW23Pv25_K_0A0WdcEo</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Borer, D.</creator><creator>Delbruck, T.</creator><creator>Rösgen, T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2702-5876</orcidid></search><sort><creationdate>20171201</creationdate><title>Three-dimensional particle tracking velocimetry using dynamic vision sensors</title><author>Borer, D. ; Delbruck, T. ; Rösgen, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5b8fa67bb09cfa120fb25af248791d797f69c6b3f412b5d9f43ec56df15d4b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cameras</topic><topic>Data analysis</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow visualization</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Kalman filters</topic><topic>Letter</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Sensors</topic><topic>Software reviews</topic><topic>Tracers</topic><topic>Velocity measurement</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borer, D.</creatorcontrib><creatorcontrib>Delbruck, T.</creatorcontrib><creatorcontrib>Rösgen, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borer, D.</au><au>Delbruck, T.</au><au>Rösgen, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional particle tracking velocimetry using dynamic vision sensors</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>58</volume><issue>12</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>165</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The “dynamic vision sensors” register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-017-2452-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2702-5876</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2017-12, Vol.58 (12), p.1-7, Article 165
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_1961835320
source SpringerNature Journals
subjects Cameras
Data analysis
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flow visualization
Fluid- and Aerodynamics
Heat and Mass Transfer
Kalman filters
Letter
Particle tracking
Particle tracking velocimetry
Sensors
Software reviews
Tracers
Velocity measurement
Wind tunnels
title Three-dimensional particle tracking velocimetry using dynamic vision sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20particle%20tracking%20velocimetry%20using%20dynamic%20vision%20sensors&rft.jtitle=Experiments%20in%20fluids&rft.au=Borer,%20D.&rft.date=2017-12-01&rft.volume=58&rft.issue=12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=165&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-017-2452-5&rft_dat=%3Cproquest_cross%3E1961835320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961835320&rft_id=info:pmid/&rfr_iscdi=true