The curvature and torsion of curves in a surface
Let f be a function with certain properties and γ be a closed curve with the torsion τ . We prove that ∮ γ f τ d s = 0 if γ is a spherical curve, and conversely, if a surface makes the integral equal to zero for all closed curves, it is part of a sphere or a plane. This generalizes a known theorem o...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2017-12, Vol.108 (3), p.1085-1090 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1090 |
---|---|
container_issue | 3 |
container_start_page | 1085 |
container_title | Journal of geometry |
container_volume | 108 |
creator | Yin, Songting Zheng, Daxiao |
description | Let
f
be a function with certain properties and
γ
be a closed curve with the torsion
τ
. We prove that
∮
γ
f
τ
d
s
=
0
if
γ
is a spherical curve, and conversely, if a surface makes the integral equal to zero for all closed curves, it is part of a sphere or a plane. This generalizes a known theorem on the total torsion for a closed curve. |
doi_str_mv | 10.1007/s00022-017-0397-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961835109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961835109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2f82f0bb09cc7c4b8c9333013ee2bab6a82d49a43c7df9c91450d0167d322afb3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqHwAWyWmA3v2W5sj6gCilSJpcyW7diQCpJiJ0j8PSlhYGF6wz33PukQcolwjQDqpgAA5wxQMRBGMX1EKpQcmDZGHZMKQCrGZa1PyVkpu4kWvDYVge1rpGHMn24Yc6Sua-jQ59L2He3TTxALbTvqaBlzciGek5Pk3kq8-L0L8nx_t12t2ebp4XF1u2FBYD0wnjRP4D2YEFSQXgcjhAAUMXLvfO00b6RxUgTVJBMMyiU0gLVqBOcuebEgV_PuPvcfYyyD3fVj7qaXFk2NWiwRzEThTIXcl5Jjsvvcvrv8ZRHsQYydxdhJjD2IsXrq8LlTJrZ7ifnP8r-lb7P3ZE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961835109</pqid></control><display><type>article</type><title>The curvature and torsion of curves in a surface</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yin, Songting ; Zheng, Daxiao</creator><creatorcontrib>Yin, Songting ; Zheng, Daxiao</creatorcontrib><description>Let
f
be a function with certain properties and
γ
be a closed curve with the torsion
τ
. We prove that
∮
γ
f
τ
d
s
=
0
if
γ
is a spherical curve, and conversely, if a surface makes the integral equal to zero for all closed curves, it is part of a sphere or a plane. This generalizes a known theorem on the total torsion for a closed curve.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-017-0397-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Curvature ; Geometry ; Mathematics ; Mathematics and Statistics ; Torsion</subject><ispartof>Journal of geometry, 2017-12, Vol.108 (3), p.1085-1090</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2f82f0bb09cc7c4b8c9333013ee2bab6a82d49a43c7df9c91450d0167d322afb3</citedby><cites>FETCH-LOGICAL-c316t-2f82f0bb09cc7c4b8c9333013ee2bab6a82d49a43c7df9c91450d0167d322afb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00022-017-0397-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00022-017-0397-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yin, Songting</creatorcontrib><creatorcontrib>Zheng, Daxiao</creatorcontrib><title>The curvature and torsion of curves in a surface</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>Let
f
be a function with certain properties and
γ
be a closed curve with the torsion
τ
. We prove that
∮
γ
f
τ
d
s
=
0
if
γ
is a spherical curve, and conversely, if a surface makes the integral equal to zero for all closed curves, it is part of a sphere or a plane. This generalizes a known theorem on the total torsion for a closed curve.</description><subject>Curvature</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Torsion</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqHwAWyWmA3v2W5sj6gCilSJpcyW7diQCpJiJ0j8PSlhYGF6wz33PukQcolwjQDqpgAA5wxQMRBGMX1EKpQcmDZGHZMKQCrGZa1PyVkpu4kWvDYVge1rpGHMn24Yc6Sua-jQ59L2He3TTxALbTvqaBlzciGek5Pk3kq8-L0L8nx_t12t2ebp4XF1u2FBYD0wnjRP4D2YEFSQXgcjhAAUMXLvfO00b6RxUgTVJBMMyiU0gLVqBOcuebEgV_PuPvcfYyyD3fVj7qaXFk2NWiwRzEThTIXcl5Jjsvvcvrv8ZRHsQYydxdhJjD2IsXrq8LlTJrZ7ifnP8r-lb7P3ZE0</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Yin, Songting</creator><creator>Zheng, Daxiao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>The curvature and torsion of curves in a surface</title><author>Yin, Songting ; Zheng, Daxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2f82f0bb09cc7c4b8c9333013ee2bab6a82d49a43c7df9c91450d0167d322afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Curvature</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Songting</creatorcontrib><creatorcontrib>Zheng, Daxiao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Songting</au><au>Zheng, Daxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The curvature and torsion of curves in a surface</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>108</volume><issue>3</issue><spage>1085</spage><epage>1090</epage><pages>1085-1090</pages><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>Let
f
be a function with certain properties and
γ
be a closed curve with the torsion
τ
. We prove that
∮
γ
f
τ
d
s
=
0
if
γ
is a spherical curve, and conversely, if a surface makes the integral equal to zero for all closed curves, it is part of a sphere or a plane. This generalizes a known theorem on the total torsion for a closed curve.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-017-0397-8</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2468 |
ispartof | Journal of geometry, 2017-12, Vol.108 (3), p.1085-1090 |
issn | 0047-2468 1420-8997 |
language | eng |
recordid | cdi_proquest_journals_1961835109 |
source | SpringerLink Journals - AutoHoldings |
subjects | Curvature Geometry Mathematics Mathematics and Statistics Torsion |
title | The curvature and torsion of curves in a surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20curvature%20and%20torsion%20of%20curves%20in%20a%20surface&rft.jtitle=Journal%20of%20geometry&rft.au=Yin,%20Songting&rft.date=2017-12-01&rft.volume=108&rft.issue=3&rft.spage=1085&rft.epage=1090&rft.pages=1085-1090&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-017-0397-8&rft_dat=%3Cproquest_cross%3E1961835109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961835109&rft_id=info:pmid/&rfr_iscdi=true |