Longest Increasing Subsequences and Log Concavity

Let π be a permutation of [ n ] = {1, . . . , n } and denote by ℓ ( π ) the length of a longest increasing subsequence of π . Let ℓ n , k be the number of permutations π of [n] with ℓ ( π ) = k . Chen conjectured that the sequence ℓ n , 1 , ℓ n , 2 , . . . , ℓ n , n is log concave for every fixed po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2017-12, Vol.21 (4), p.535-549
Hauptverfasser: Bóna, Miklós, Lackner, Marie-Louise, Sagan, Bruce E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let π be a permutation of [ n ] = {1, . . . , n } and denote by ℓ ( π ) the length of a longest increasing subsequence of π . Let ℓ n , k be the number of permutations π of [n] with ℓ ( π ) = k . Chen conjectured that the sequence ℓ n , 1 , ℓ n , 2 , . . . , ℓ n , n is log concave for every fixed positive integer n . We conjecture that the same is true if one is restricted to considering involutions and we show that these two conjectures are closely related. We also prove various analogues of these conjectures concerning permutations whose output tableaux under the Robinson-Schensted algorithm have certain shapes. In addition, we present a proof of Deift that part of the limiting distribution is log concave. Various other conjectures are discussed.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-017-0365-x