Population genetic structure and gene flow of Adélie penguins (Pygoscelis adeliae) breeding throughout the western Antarctic Peninsula

Adélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antarctic science 2017-12, Vol.29 (6), p.499-510
Hauptverfasser: Gorman, Kristen B., Talbot, Sandra L., Sonsthagen, Sarah A., Sage, George K., Gravely, Meg C., Fraser, William R., Williams, Tony D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 6
container_start_page 499
container_title Antarctic science
container_volume 29
creator Gorman, Kristen B.
Talbot, Sandra L.
Sonsthagen, Sarah A.
Sage, George K.
Gravely, Meg C.
Fraser, William R.
Williams, Tony D.
description Adélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population genetic structure and gene flow given relatively recent and continuing reductions in sea ice habitats and changes in numbers of breeding adults at colonies throughout the WAP. Genetic diversity, spatial genetic structure, genetic signatures of fluctuations in population demography and gene flow were assessed in four regional Adélie penguin colonies. The analyses indicated little genetic structure overall based on bi-parentally inherited microsatellite markers (F ST =-0.006–0.004). No significant variance was observed in overall haplotype frequency (mtDNA Φ ST =0.017; P=0.112). Some comparisons with Charcot Island were significant, suggestive of female-biased philopatry. Estimates of gene flow based on a two-population coalescent model were asymmetrical from the species’ regional core to its northern range. Breeding Adélie penguins of the WAP are a panmictic population and hold adequate genetic diversity and dispersal capacity to be resilient to environmental change.
doi_str_mv 10.1017/S0954102017000293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961737712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0954102017000293</cupid><sourcerecordid>1961737712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-15a014d12ba3493049955b5e78cca1fc2cab8baef3a52d418f1c6678424124043</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2FliA4uAx3GaZFlV_KRKVALWkeNM0lSpXWxHqCfgLJyDi-HQLpAQqxnNzPvMI-Qc2DUwSG-eWZ4IYDz0jDGexwdkBPEkiThL80MyGtbRsD8mJ86tGAOeJWxEPhZm03fSt0bTBjX6VlHnba98b5FKXf1Mad2Zd2pqOq2-PrsW6QZ107fa0cvFtjFOYdc6KqtQJF7R0iJWrW6oX1rTN0vT-9AifUfn0Wo61V5aNUgtUAeWYOCUHNWyc3i2r2Pyenf7MnuI5k_3j7PpPFLhGR9BIhmICngpY5HHTOR5kpQJpplSEmrFlSyzUmIdy4RXArIa1GSSZoIL4IKJeEwudrwba9764KdYmd7qIFlAPoE0TlPg4Qp2V8oa5yzWxca2a2m3BbBiyLv4k3fAxHuMXJe2rRr8Rf0v6hs7coQ_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961737712</pqid></control><display><type>article</type><title>Population genetic structure and gene flow of Adélie penguins (Pygoscelis adeliae) breeding throughout the western Antarctic Peninsula</title><source>Cambridge University Press Journals Complete</source><creator>Gorman, Kristen B. ; Talbot, Sandra L. ; Sonsthagen, Sarah A. ; Sage, George K. ; Gravely, Meg C. ; Fraser, William R. ; Williams, Tony D.</creator><creatorcontrib>Gorman, Kristen B. ; Talbot, Sandra L. ; Sonsthagen, Sarah A. ; Sage, George K. ; Gravely, Meg C. ; Fraser, William R. ; Williams, Tony D.</creatorcontrib><description>Adélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population genetic structure and gene flow given relatively recent and continuing reductions in sea ice habitats and changes in numbers of breeding adults at colonies throughout the WAP. Genetic diversity, spatial genetic structure, genetic signatures of fluctuations in population demography and gene flow were assessed in four regional Adélie penguin colonies. The analyses indicated little genetic structure overall based on bi-parentally inherited microsatellite markers (F ST =-0.006–0.004). No significant variance was observed in overall haplotype frequency (mtDNA Φ ST =0.017; P=0.112). Some comparisons with Charcot Island were significant, suggestive of female-biased philopatry. Estimates of gene flow based on a two-population coalescent model were asymmetrical from the species’ regional core to its northern range. Breeding Adélie penguins of the WAP are a panmictic population and hold adequate genetic diversity and dispersal capacity to be resilient to environmental change.</description><identifier>ISSN: 0954-1020</identifier><identifier>EISSN: 1365-2079</identifier><identifier>DOI: 10.1017/S0954102017000293</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adults ; Biological Sciences ; Breeding ; Capacity ; Climate change ; Climate variability ; Colonies ; Demography ; Deoxyribonucleic acid ; Dispersal ; DNA ; Ecology ; Ecosystem biology ; Environmental changes ; Gene flow ; Genetic diversity ; Genetic markers ; Genetic structure ; Genetic variation ; Haplotypes ; Historical structures ; Ice ; Islands ; Marine ecosystems ; Markers ; Microsatellites ; Mitochondrial DNA ; Philopatry ; Population ; Population genetics ; Pygoscelis adeliae ; Regional analysis ; Sea ice ; Seabirds ; Studies ; Trends ; Variance analysis</subject><ispartof>Antarctic science, 2017-12, Vol.29 (6), p.499-510</ispartof><rights>Antarctic Science Ltd 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-15a014d12ba3493049955b5e78cca1fc2cab8baef3a52d418f1c6678424124043</citedby><cites>FETCH-LOGICAL-c365t-15a014d12ba3493049955b5e78cca1fc2cab8baef3a52d418f1c6678424124043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0954102017000293/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>Gorman, Kristen B.</creatorcontrib><creatorcontrib>Talbot, Sandra L.</creatorcontrib><creatorcontrib>Sonsthagen, Sarah A.</creatorcontrib><creatorcontrib>Sage, George K.</creatorcontrib><creatorcontrib>Gravely, Meg C.</creatorcontrib><creatorcontrib>Fraser, William R.</creatorcontrib><creatorcontrib>Williams, Tony D.</creatorcontrib><title>Population genetic structure and gene flow of Adélie penguins (Pygoscelis adeliae) breeding throughout the western Antarctic Peninsula</title><title>Antarctic science</title><addtitle>Antarctic Science</addtitle><description>Adélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population genetic structure and gene flow given relatively recent and continuing reductions in sea ice habitats and changes in numbers of breeding adults at colonies throughout the WAP. Genetic diversity, spatial genetic structure, genetic signatures of fluctuations in population demography and gene flow were assessed in four regional Adélie penguin colonies. The analyses indicated little genetic structure overall based on bi-parentally inherited microsatellite markers (F ST =-0.006–0.004). No significant variance was observed in overall haplotype frequency (mtDNA Φ ST =0.017; P=0.112). Some comparisons with Charcot Island were significant, suggestive of female-biased philopatry. Estimates of gene flow based on a two-population coalescent model were asymmetrical from the species’ regional core to its northern range. Breeding Adélie penguins of the WAP are a panmictic population and hold adequate genetic diversity and dispersal capacity to be resilient to environmental change.</description><subject>Adults</subject><subject>Biological Sciences</subject><subject>Breeding</subject><subject>Capacity</subject><subject>Climate change</subject><subject>Climate variability</subject><subject>Colonies</subject><subject>Demography</subject><subject>Deoxyribonucleic acid</subject><subject>Dispersal</subject><subject>DNA</subject><subject>Ecology</subject><subject>Ecosystem biology</subject><subject>Environmental changes</subject><subject>Gene flow</subject><subject>Genetic diversity</subject><subject>Genetic markers</subject><subject>Genetic structure</subject><subject>Genetic variation</subject><subject>Haplotypes</subject><subject>Historical structures</subject><subject>Ice</subject><subject>Islands</subject><subject>Marine ecosystems</subject><subject>Markers</subject><subject>Microsatellites</subject><subject>Mitochondrial DNA</subject><subject>Philopatry</subject><subject>Population</subject><subject>Population genetics</subject><subject>Pygoscelis adeliae</subject><subject>Regional analysis</subject><subject>Sea ice</subject><subject>Seabirds</subject><subject>Studies</subject><subject>Trends</subject><subject>Variance analysis</subject><issn>0954-1020</issn><issn>1365-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UEtOwzAQtRBIlMIB2FliA4uAx3GaZFlV_KRKVALWkeNM0lSpXWxHqCfgLJyDi-HQLpAQqxnNzPvMI-Qc2DUwSG-eWZ4IYDz0jDGexwdkBPEkiThL80MyGtbRsD8mJ86tGAOeJWxEPhZm03fSt0bTBjX6VlHnba98b5FKXf1Mad2Zd2pqOq2-PrsW6QZ107fa0cvFtjFOYdc6KqtQJF7R0iJWrW6oX1rTN0vT-9AifUfn0Wo61V5aNUgtUAeWYOCUHNWyc3i2r2Pyenf7MnuI5k_3j7PpPFLhGR9BIhmICngpY5HHTOR5kpQJpplSEmrFlSyzUmIdy4RXArIa1GSSZoIL4IKJeEwudrwba9764KdYmd7qIFlAPoE0TlPg4Qp2V8oa5yzWxca2a2m3BbBiyLv4k3fAxHuMXJe2rRr8Rf0v6hs7coQ_</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Gorman, Kristen B.</creator><creator>Talbot, Sandra L.</creator><creator>Sonsthagen, Sarah A.</creator><creator>Sage, George K.</creator><creator>Gravely, Meg C.</creator><creator>Fraser, William R.</creator><creator>Williams, Tony D.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>201712</creationdate><title>Population genetic structure and gene flow of Adélie penguins (Pygoscelis adeliae) breeding throughout the western Antarctic Peninsula</title><author>Gorman, Kristen B. ; Talbot, Sandra L. ; Sonsthagen, Sarah A. ; Sage, George K. ; Gravely, Meg C. ; Fraser, William R. ; Williams, Tony D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-15a014d12ba3493049955b5e78cca1fc2cab8baef3a52d418f1c6678424124043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adults</topic><topic>Biological Sciences</topic><topic>Breeding</topic><topic>Capacity</topic><topic>Climate change</topic><topic>Climate variability</topic><topic>Colonies</topic><topic>Demography</topic><topic>Deoxyribonucleic acid</topic><topic>Dispersal</topic><topic>DNA</topic><topic>Ecology</topic><topic>Ecosystem biology</topic><topic>Environmental changes</topic><topic>Gene flow</topic><topic>Genetic diversity</topic><topic>Genetic markers</topic><topic>Genetic structure</topic><topic>Genetic variation</topic><topic>Haplotypes</topic><topic>Historical structures</topic><topic>Ice</topic><topic>Islands</topic><topic>Marine ecosystems</topic><topic>Markers</topic><topic>Microsatellites</topic><topic>Mitochondrial DNA</topic><topic>Philopatry</topic><topic>Population</topic><topic>Population genetics</topic><topic>Pygoscelis adeliae</topic><topic>Regional analysis</topic><topic>Sea ice</topic><topic>Seabirds</topic><topic>Studies</topic><topic>Trends</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorman, Kristen B.</creatorcontrib><creatorcontrib>Talbot, Sandra L.</creatorcontrib><creatorcontrib>Sonsthagen, Sarah A.</creatorcontrib><creatorcontrib>Sage, George K.</creatorcontrib><creatorcontrib>Gravely, Meg C.</creatorcontrib><creatorcontrib>Fraser, William R.</creatorcontrib><creatorcontrib>Williams, Tony D.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Antarctic science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorman, Kristen B.</au><au>Talbot, Sandra L.</au><au>Sonsthagen, Sarah A.</au><au>Sage, George K.</au><au>Gravely, Meg C.</au><au>Fraser, William R.</au><au>Williams, Tony D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population genetic structure and gene flow of Adélie penguins (Pygoscelis adeliae) breeding throughout the western Antarctic Peninsula</atitle><jtitle>Antarctic science</jtitle><addtitle>Antarctic Science</addtitle><date>2017-12</date><risdate>2017</risdate><volume>29</volume><issue>6</issue><spage>499</spage><epage>510</epage><pages>499-510</pages><issn>0954-1020</issn><eissn>1365-2079</eissn><abstract>Adélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population genetic structure and gene flow given relatively recent and continuing reductions in sea ice habitats and changes in numbers of breeding adults at colonies throughout the WAP. Genetic diversity, spatial genetic structure, genetic signatures of fluctuations in population demography and gene flow were assessed in four regional Adélie penguin colonies. The analyses indicated little genetic structure overall based on bi-parentally inherited microsatellite markers (F ST =-0.006–0.004). No significant variance was observed in overall haplotype frequency (mtDNA Φ ST =0.017; P=0.112). Some comparisons with Charcot Island were significant, suggestive of female-biased philopatry. Estimates of gene flow based on a two-population coalescent model were asymmetrical from the species’ regional core to its northern range. Breeding Adélie penguins of the WAP are a panmictic population and hold adequate genetic diversity and dispersal capacity to be resilient to environmental change.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0954102017000293</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-1020
ispartof Antarctic science, 2017-12, Vol.29 (6), p.499-510
issn 0954-1020
1365-2079
language eng
recordid cdi_proquest_journals_1961737712
source Cambridge University Press Journals Complete
subjects Adults
Biological Sciences
Breeding
Capacity
Climate change
Climate variability
Colonies
Demography
Deoxyribonucleic acid
Dispersal
DNA
Ecology
Ecosystem biology
Environmental changes
Gene flow
Genetic diversity
Genetic markers
Genetic structure
Genetic variation
Haplotypes
Historical structures
Ice
Islands
Marine ecosystems
Markers
Microsatellites
Mitochondrial DNA
Philopatry
Population
Population genetics
Pygoscelis adeliae
Regional analysis
Sea ice
Seabirds
Studies
Trends
Variance analysis
title Population genetic structure and gene flow of Adélie penguins (Pygoscelis adeliae) breeding throughout the western Antarctic Peninsula
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20genetic%20structure%20and%20gene%20flow%20of%20Ad%C3%A9lie%20penguins%20(Pygoscelis%20adeliae)%20breeding%20throughout%20the%20western%20Antarctic%20Peninsula&rft.jtitle=Antarctic%20science&rft.au=Gorman,%20Kristen%20B.&rft.date=2017-12&rft.volume=29&rft.issue=6&rft.spage=499&rft.epage=510&rft.pages=499-510&rft.issn=0954-1020&rft.eissn=1365-2079&rft_id=info:doi/10.1017/S0954102017000293&rft_dat=%3Cproquest_cross%3E1961737712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961737712&rft_id=info:pmid/&rft_cupid=10_1017_S0954102017000293&rfr_iscdi=true