Nanoenabling electrochemical sensors for life sciences applications

Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2017-08, Vol.32 (15), p.2883-2904
Hauptverfasser: Galvin, Paul, Padmanathan, Narayanasamy, Razeeb, Kafil M., Rohan, James F., Nagle, Lorraine C., Wahl, Amelie, Moore, Eric, Messina, Walter, Twomey, Karen, Ogurtsov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2904
container_issue 15
container_start_page 2883
container_title Journal of materials research
container_volume 32
creator Galvin, Paul
Padmanathan, Narayanasamy
Razeeb, Kafil M.
Rohan, James F.
Nagle, Lorraine C.
Wahl, Amelie
Moore, Eric
Messina, Walter
Twomey, Karen
Ogurtsov, Vladimir
description Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.
doi_str_mv 10.1557/jmr.2017.290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961492482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2017_290</cupid><sourcerecordid>1961492482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</originalsourceid><addsrcrecordid>eNqFkMtKxDAUQIMoOI7u_ICCW1vzbJulDL5g0I2uQ5LejhnapCadhX9vdGbhQhACl8C558JB6JLgigjR3GzHWFFMmopKfIQWFHNeCkbrY7TAbctLKgk_RWcpbTEmAjd8gVbP2gfw2gzObwoYwM4x2HcYndVDkcCnEFPRh1gMrociWQfeQir0NA0ZmV3w6Ryd9HpIcHGYS_R2f_e6eizXLw9Pq9t1aVnTzCW11HJZEyxrLXmDjWCmBSx63duuA5sfY7WkUnCjWWcEtVgb_vM1mGG2RFd77xTDxw7SrLZhF30-qUj2ckl5SzN1vadsDClF6NUU3ajjpyJYfWdSOZP6zqRypoyXezxlzG8g_pL-zVcHvR5NdN0G_ln4Anqpee0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961492482</pqid></control><display><type>article</type><title>Nanoenabling electrochemical sensors for life sciences applications</title><source>SpringerLink Journals</source><source>Cambridge Journals</source><creator>Galvin, Paul ; Padmanathan, Narayanasamy ; Razeeb, Kafil M. ; Rohan, James F. ; Nagle, Lorraine C. ; Wahl, Amelie ; Moore, Eric ; Messina, Walter ; Twomey, Karen ; Ogurtsov, Vladimir</creator><creatorcontrib>Galvin, Paul ; Padmanathan, Narayanasamy ; Razeeb, Kafil M. ; Rohan, James F. ; Nagle, Lorraine C. ; Wahl, Amelie ; Moore, Eric ; Messina, Walter ; Twomey, Karen ; Ogurtsov, Vladimir</creatorcontrib><description>Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2017.290</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Antifouling ; Applied and Technical Physics ; Biomarkers ; Biomaterials ; Complex media ; Electrodes ; Electrolytes ; Environmental monitoring ; Gold ; Inorganic Chemistry ; Invited Review ; Invited Reviews ; Life sciences ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Noise ; Oxidation ; Reproducibility ; Sensitivity analysis ; Sensors</subject><ispartof>Journal of materials research, 2017-08, Vol.32 (15), p.2883-2904</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</citedby><cites>FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2017.290$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291417002904/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Galvin, Paul</creatorcontrib><creatorcontrib>Padmanathan, Narayanasamy</creatorcontrib><creatorcontrib>Razeeb, Kafil M.</creatorcontrib><creatorcontrib>Rohan, James F.</creatorcontrib><creatorcontrib>Nagle, Lorraine C.</creatorcontrib><creatorcontrib>Wahl, Amelie</creatorcontrib><creatorcontrib>Moore, Eric</creatorcontrib><creatorcontrib>Messina, Walter</creatorcontrib><creatorcontrib>Twomey, Karen</creatorcontrib><creatorcontrib>Ogurtsov, Vladimir</creatorcontrib><title>Nanoenabling electrochemical sensors for life sciences applications</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.</description><subject>Antifouling</subject><subject>Applied and Technical Physics</subject><subject>Biomarkers</subject><subject>Biomaterials</subject><subject>Complex media</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Environmental monitoring</subject><subject>Gold</subject><subject>Inorganic Chemistry</subject><subject>Invited Review</subject><subject>Invited Reviews</subject><subject>Life sciences</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Noise</subject><subject>Oxidation</subject><subject>Reproducibility</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKxDAUQIMoOI7u_ICCW1vzbJulDL5g0I2uQ5LejhnapCadhX9vdGbhQhACl8C558JB6JLgigjR3GzHWFFMmopKfIQWFHNeCkbrY7TAbctLKgk_RWcpbTEmAjd8gVbP2gfw2gzObwoYwM4x2HcYndVDkcCnEFPRh1gMrociWQfeQir0NA0ZmV3w6Ryd9HpIcHGYS_R2f_e6eizXLw9Pq9t1aVnTzCW11HJZEyxrLXmDjWCmBSx63duuA5sfY7WkUnCjWWcEtVgb_vM1mGG2RFd77xTDxw7SrLZhF30-qUj2ckl5SzN1vadsDClF6NUU3ajjpyJYfWdSOZP6zqRypoyXezxlzG8g_pL-zVcHvR5NdN0G_ln4Anqpee0</recordid><startdate>20170814</startdate><enddate>20170814</enddate><creator>Galvin, Paul</creator><creator>Padmanathan, Narayanasamy</creator><creator>Razeeb, Kafil M.</creator><creator>Rohan, James F.</creator><creator>Nagle, Lorraine C.</creator><creator>Wahl, Amelie</creator><creator>Moore, Eric</creator><creator>Messina, Walter</creator><creator>Twomey, Karen</creator><creator>Ogurtsov, Vladimir</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170814</creationdate><title>Nanoenabling electrochemical sensors for life sciences applications</title><author>Galvin, Paul ; Padmanathan, Narayanasamy ; Razeeb, Kafil M. ; Rohan, James F. ; Nagle, Lorraine C. ; Wahl, Amelie ; Moore, Eric ; Messina, Walter ; Twomey, Karen ; Ogurtsov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antifouling</topic><topic>Applied and Technical Physics</topic><topic>Biomarkers</topic><topic>Biomaterials</topic><topic>Complex media</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Environmental monitoring</topic><topic>Gold</topic><topic>Inorganic Chemistry</topic><topic>Invited Review</topic><topic>Invited Reviews</topic><topic>Life sciences</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Noise</topic><topic>Oxidation</topic><topic>Reproducibility</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galvin, Paul</creatorcontrib><creatorcontrib>Padmanathan, Narayanasamy</creatorcontrib><creatorcontrib>Razeeb, Kafil M.</creatorcontrib><creatorcontrib>Rohan, James F.</creatorcontrib><creatorcontrib>Nagle, Lorraine C.</creatorcontrib><creatorcontrib>Wahl, Amelie</creatorcontrib><creatorcontrib>Moore, Eric</creatorcontrib><creatorcontrib>Messina, Walter</creatorcontrib><creatorcontrib>Twomey, Karen</creatorcontrib><creatorcontrib>Ogurtsov, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galvin, Paul</au><au>Padmanathan, Narayanasamy</au><au>Razeeb, Kafil M.</au><au>Rohan, James F.</au><au>Nagle, Lorraine C.</au><au>Wahl, Amelie</au><au>Moore, Eric</au><au>Messina, Walter</au><au>Twomey, Karen</au><au>Ogurtsov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoenabling electrochemical sensors for life sciences applications</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-08-14</date><risdate>2017</risdate><volume>32</volume><issue>15</issue><spage>2883</spage><epage>2904</epage><pages>2883-2904</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2017.290</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2017-08, Vol.32 (15), p.2883-2904
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_1961492482
source SpringerLink Journals; Cambridge Journals
subjects Antifouling
Applied and Technical Physics
Biomarkers
Biomaterials
Complex media
Electrodes
Electrolytes
Environmental monitoring
Gold
Inorganic Chemistry
Invited Review
Invited Reviews
Life sciences
Materials Engineering
Materials research
Materials Science
Nanotechnology
Noise
Oxidation
Reproducibility
Sensitivity analysis
Sensors
title Nanoenabling electrochemical sensors for life sciences applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoenabling%20electrochemical%20sensors%20for%20life%20sciences%20applications&rft.jtitle=Journal%20of%20materials%20research&rft.au=Galvin,%20Paul&rft.date=2017-08-14&rft.volume=32&rft.issue=15&rft.spage=2883&rft.epage=2904&rft.pages=2883-2904&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2017.290&rft_dat=%3Cproquest_cross%3E1961492482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961492482&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2017_290&rfr_iscdi=true