Nanoenabling electrochemical sensors for life sciences applications
Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as se...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2017-08, Vol.32 (15), p.2883-2904 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2904 |
---|---|
container_issue | 15 |
container_start_page | 2883 |
container_title | Journal of materials research |
container_volume | 32 |
creator | Galvin, Paul Padmanathan, Narayanasamy Razeeb, Kafil M. Rohan, James F. Nagle, Lorraine C. Wahl, Amelie Moore, Eric Messina, Walter Twomey, Karen Ogurtsov, Vladimir |
description | Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars. |
doi_str_mv | 10.1557/jmr.2017.290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961492482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2017_290</cupid><sourcerecordid>1961492482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</originalsourceid><addsrcrecordid>eNqFkMtKxDAUQIMoOI7u_ICCW1vzbJulDL5g0I2uQ5LejhnapCadhX9vdGbhQhACl8C558JB6JLgigjR3GzHWFFMmopKfIQWFHNeCkbrY7TAbctLKgk_RWcpbTEmAjd8gVbP2gfw2gzObwoYwM4x2HcYndVDkcCnEFPRh1gMrociWQfeQir0NA0ZmV3w6Ryd9HpIcHGYS_R2f_e6eizXLw9Pq9t1aVnTzCW11HJZEyxrLXmDjWCmBSx63duuA5sfY7WkUnCjWWcEtVgb_vM1mGG2RFd77xTDxw7SrLZhF30-qUj2ckl5SzN1vadsDClF6NUU3ajjpyJYfWdSOZP6zqRypoyXezxlzG8g_pL-zVcHvR5NdN0G_ln4Anqpee0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961492482</pqid></control><display><type>article</type><title>Nanoenabling electrochemical sensors for life sciences applications</title><source>SpringerLink Journals</source><source>Cambridge Journals</source><creator>Galvin, Paul ; Padmanathan, Narayanasamy ; Razeeb, Kafil M. ; Rohan, James F. ; Nagle, Lorraine C. ; Wahl, Amelie ; Moore, Eric ; Messina, Walter ; Twomey, Karen ; Ogurtsov, Vladimir</creator><creatorcontrib>Galvin, Paul ; Padmanathan, Narayanasamy ; Razeeb, Kafil M. ; Rohan, James F. ; Nagle, Lorraine C. ; Wahl, Amelie ; Moore, Eric ; Messina, Walter ; Twomey, Karen ; Ogurtsov, Vladimir</creatorcontrib><description>Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2017.290</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Antifouling ; Applied and Technical Physics ; Biomarkers ; Biomaterials ; Complex media ; Electrodes ; Electrolytes ; Environmental monitoring ; Gold ; Inorganic Chemistry ; Invited Review ; Invited Reviews ; Life sciences ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Noise ; Oxidation ; Reproducibility ; Sensitivity analysis ; Sensors</subject><ispartof>Journal of materials research, 2017-08, Vol.32 (15), p.2883-2904</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</citedby><cites>FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2017.290$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291417002904/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Galvin, Paul</creatorcontrib><creatorcontrib>Padmanathan, Narayanasamy</creatorcontrib><creatorcontrib>Razeeb, Kafil M.</creatorcontrib><creatorcontrib>Rohan, James F.</creatorcontrib><creatorcontrib>Nagle, Lorraine C.</creatorcontrib><creatorcontrib>Wahl, Amelie</creatorcontrib><creatorcontrib>Moore, Eric</creatorcontrib><creatorcontrib>Messina, Walter</creatorcontrib><creatorcontrib>Twomey, Karen</creatorcontrib><creatorcontrib>Ogurtsov, Vladimir</creatorcontrib><title>Nanoenabling electrochemical sensors for life sciences applications</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.</description><subject>Antifouling</subject><subject>Applied and Technical Physics</subject><subject>Biomarkers</subject><subject>Biomaterials</subject><subject>Complex media</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Environmental monitoring</subject><subject>Gold</subject><subject>Inorganic Chemistry</subject><subject>Invited Review</subject><subject>Invited Reviews</subject><subject>Life sciences</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Noise</subject><subject>Oxidation</subject><subject>Reproducibility</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKxDAUQIMoOI7u_ICCW1vzbJulDL5g0I2uQ5LejhnapCadhX9vdGbhQhACl8C558JB6JLgigjR3GzHWFFMmopKfIQWFHNeCkbrY7TAbctLKgk_RWcpbTEmAjd8gVbP2gfw2gzObwoYwM4x2HcYndVDkcCnEFPRh1gMrociWQfeQir0NA0ZmV3w6Ryd9HpIcHGYS_R2f_e6eizXLw9Pq9t1aVnTzCW11HJZEyxrLXmDjWCmBSx63duuA5sfY7WkUnCjWWcEtVgb_vM1mGG2RFd77xTDxw7SrLZhF30-qUj2ckl5SzN1vadsDClF6NUU3ajjpyJYfWdSOZP6zqRypoyXezxlzG8g_pL-zVcHvR5NdN0G_ln4Anqpee0</recordid><startdate>20170814</startdate><enddate>20170814</enddate><creator>Galvin, Paul</creator><creator>Padmanathan, Narayanasamy</creator><creator>Razeeb, Kafil M.</creator><creator>Rohan, James F.</creator><creator>Nagle, Lorraine C.</creator><creator>Wahl, Amelie</creator><creator>Moore, Eric</creator><creator>Messina, Walter</creator><creator>Twomey, Karen</creator><creator>Ogurtsov, Vladimir</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170814</creationdate><title>Nanoenabling electrochemical sensors for life sciences applications</title><author>Galvin, Paul ; Padmanathan, Narayanasamy ; Razeeb, Kafil M. ; Rohan, James F. ; Nagle, Lorraine C. ; Wahl, Amelie ; Moore, Eric ; Messina, Walter ; Twomey, Karen ; Ogurtsov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2c2c4961096a9470b53b8e05fafcddecdec33692954ba3db52c0ab4954bab0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antifouling</topic><topic>Applied and Technical Physics</topic><topic>Biomarkers</topic><topic>Biomaterials</topic><topic>Complex media</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Environmental monitoring</topic><topic>Gold</topic><topic>Inorganic Chemistry</topic><topic>Invited Review</topic><topic>Invited Reviews</topic><topic>Life sciences</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Noise</topic><topic>Oxidation</topic><topic>Reproducibility</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galvin, Paul</creatorcontrib><creatorcontrib>Padmanathan, Narayanasamy</creatorcontrib><creatorcontrib>Razeeb, Kafil M.</creatorcontrib><creatorcontrib>Rohan, James F.</creatorcontrib><creatorcontrib>Nagle, Lorraine C.</creatorcontrib><creatorcontrib>Wahl, Amelie</creatorcontrib><creatorcontrib>Moore, Eric</creatorcontrib><creatorcontrib>Messina, Walter</creatorcontrib><creatorcontrib>Twomey, Karen</creatorcontrib><creatorcontrib>Ogurtsov, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galvin, Paul</au><au>Padmanathan, Narayanasamy</au><au>Razeeb, Kafil M.</au><au>Rohan, James F.</au><au>Nagle, Lorraine C.</au><au>Wahl, Amelie</au><au>Moore, Eric</au><au>Messina, Walter</au><au>Twomey, Karen</au><au>Ogurtsov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoenabling electrochemical sensors for life sciences applications</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-08-14</date><risdate>2017</risdate><volume>32</volume><issue>15</issue><spage>2883</spage><epage>2904</epage><pages>2883-2904</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2017.290</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2017-08, Vol.32 (15), p.2883-2904 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_1961492482 |
source | SpringerLink Journals; Cambridge Journals |
subjects | Antifouling Applied and Technical Physics Biomarkers Biomaterials Complex media Electrodes Electrolytes Environmental monitoring Gold Inorganic Chemistry Invited Review Invited Reviews Life sciences Materials Engineering Materials research Materials Science Nanotechnology Noise Oxidation Reproducibility Sensitivity analysis Sensors |
title | Nanoenabling electrochemical sensors for life sciences applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoenabling%20electrochemical%20sensors%20for%20life%20sciences%20applications&rft.jtitle=Journal%20of%20materials%20research&rft.au=Galvin,%20Paul&rft.date=2017-08-14&rft.volume=32&rft.issue=15&rft.spage=2883&rft.epage=2904&rft.pages=2883-2904&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2017.290&rft_dat=%3Cproquest_cross%3E1961492482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961492482&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2017_290&rfr_iscdi=true |