FINITARY COLORING

Suppose that the vertices of ℤd are assigned random colors via a finitary factor of independent identically distributed (i.i.d.) vertex-labels. That is, the color of vertex v is determined by a rule that examines the labels within a finite (but random and perhaps unbounded) distance R of v, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2017-09, Vol.45 (5), p.2867-2898
Hauptverfasser: Holroyd, Alexander E., Schramm, Oded, Wilson, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2898
container_issue 5
container_start_page 2867
container_title The Annals of probability
container_volume 45
creator Holroyd, Alexander E.
Schramm, Oded
Wilson, David B.
description Suppose that the vertices of ℤd are assigned random colors via a finitary factor of independent identically distributed (i.i.d.) vertex-labels. That is, the color of vertex v is determined by a rule that examines the labels within a finite (but random and perhaps unbounded) distance R of v, and the same rule applies at all vertices. We investigate the tail behavior of R if the coloring is required to be proper (i.e., if adjacent vertices must receive different colors). When d ≥ 2, the optimal tail is given by a power law for 3 colors, and a tower (iterated exponential) function for 4 or more colors (and also for 3 or more colors when d = 1). If proper coloring is replaced with any shift of finite type in dimension 1, then, apart from trivial cases, tower function behavior also applies.
doi_str_mv 10.1214/16-AOP1127
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1961432554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26362520</jstor_id><sourcerecordid>26362520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-98ddb70ae2ccd324bb7457abc7f89773512906a6cd5bb4d054a7cffffd9aa7893</originalsourceid><addsrcrecordid>eNpNz81KxDAUBeAgCtbRhT6BIG6EaG7-brMsxRkLZSrDCLoKadqCRe2YdBa-vZXOwru5m49zOIRcAbsHDvIBNM2qZwCORyThoFOaGvl6TBLGDFBAk56Ssxh7xphGlAm5XBbrYptt3q7zqqw2xXp1Tk469xHbi8NfkJfl4zZ_omW1KvKspF5wNVKTNk2NzLXc-0ZwWdcoFbraY5caRKGAG6ad9o2qa9kwJR36brrGOIepEQtyM-fuwvC9b-No-2EfvqZKC0aDnFqUnNTdrHwYYgxtZ3fh_dOFHwvM_k22oO1h8oRvZ9zHcQj_JRcMLddCc8WZ-AVxZ1DT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961432554</pqid></control><display><type>article</type><title>FINITARY COLORING</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Holroyd, Alexander E. ; Schramm, Oded ; Wilson, David B.</creator><creatorcontrib>Holroyd, Alexander E. ; Schramm, Oded ; Wilson, David B.</creatorcontrib><description>Suppose that the vertices of ℤd are assigned random colors via a finitary factor of independent identically distributed (i.i.d.) vertex-labels. That is, the color of vertex v is determined by a rule that examines the labels within a finite (but random and perhaps unbounded) distance R of v, and the same rule applies at all vertices. We investigate the tail behavior of R if the coloring is required to be proper (i.e., if adjacent vertices must receive different colors). When d ≥ 2, the optimal tail is given by a power law for 3 colors, and a tower (iterated exponential) function for 4 or more colors (and also for 3 or more colors when d = 1). If proper coloring is replaced with any shift of finite type in dimension 1, then, apart from trivial cases, tower function behavior also applies.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/16-AOP1127</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Coloring ; Graph coloring ; Labels ; Studies</subject><ispartof>The Annals of probability, 2017-09, Vol.45 (5), p.2867-2898</ispartof><rights>Copyright © 2017 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-98ddb70ae2ccd324bb7457abc7f89773512906a6cd5bb4d054a7cffffd9aa7893</citedby><cites>FETCH-LOGICAL-c325t-98ddb70ae2ccd324bb7457abc7f89773512906a6cd5bb4d054a7cffffd9aa7893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26362520$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26362520$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Holroyd, Alexander E.</creatorcontrib><creatorcontrib>Schramm, Oded</creatorcontrib><creatorcontrib>Wilson, David B.</creatorcontrib><title>FINITARY COLORING</title><title>The Annals of probability</title><description>Suppose that the vertices of ℤd are assigned random colors via a finitary factor of independent identically distributed (i.i.d.) vertex-labels. That is, the color of vertex v is determined by a rule that examines the labels within a finite (but random and perhaps unbounded) distance R of v, and the same rule applies at all vertices. We investigate the tail behavior of R if the coloring is required to be proper (i.e., if adjacent vertices must receive different colors). When d ≥ 2, the optimal tail is given by a power law for 3 colors, and a tower (iterated exponential) function for 4 or more colors (and also for 3 or more colors when d = 1). If proper coloring is replaced with any shift of finite type in dimension 1, then, apart from trivial cases, tower function behavior also applies.</description><subject>Coloring</subject><subject>Graph coloring</subject><subject>Labels</subject><subject>Studies</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNz81KxDAUBeAgCtbRhT6BIG6EaG7-brMsxRkLZSrDCLoKadqCRe2YdBa-vZXOwru5m49zOIRcAbsHDvIBNM2qZwCORyThoFOaGvl6TBLGDFBAk56Ssxh7xphGlAm5XBbrYptt3q7zqqw2xXp1Tk469xHbi8NfkJfl4zZ_omW1KvKspF5wNVKTNk2NzLXc-0ZwWdcoFbraY5caRKGAG6ad9o2qa9kwJR36brrGOIepEQtyM-fuwvC9b-No-2EfvqZKC0aDnFqUnNTdrHwYYgxtZ3fh_dOFHwvM_k22oO1h8oRvZ9zHcQj_JRcMLddCc8WZ-AVxZ1DT</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Holroyd, Alexander E.</creator><creator>Schramm, Oded</creator><creator>Wilson, David B.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20170901</creationdate><title>FINITARY COLORING</title><author>Holroyd, Alexander E. ; Schramm, Oded ; Wilson, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-98ddb70ae2ccd324bb7457abc7f89773512906a6cd5bb4d054a7cffffd9aa7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coloring</topic><topic>Graph coloring</topic><topic>Labels</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holroyd, Alexander E.</creatorcontrib><creatorcontrib>Schramm, Oded</creatorcontrib><creatorcontrib>Wilson, David B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holroyd, Alexander E.</au><au>Schramm, Oded</au><au>Wilson, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINITARY COLORING</atitle><jtitle>The Annals of probability</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>45</volume><issue>5</issue><spage>2867</spage><epage>2898</epage><pages>2867-2898</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>Suppose that the vertices of ℤd are assigned random colors via a finitary factor of independent identically distributed (i.i.d.) vertex-labels. That is, the color of vertex v is determined by a rule that examines the labels within a finite (but random and perhaps unbounded) distance R of v, and the same rule applies at all vertices. We investigate the tail behavior of R if the coloring is required to be proper (i.e., if adjacent vertices must receive different colors). When d ≥ 2, the optimal tail is given by a power law for 3 colors, and a tower (iterated exponential) function for 4 or more colors (and also for 3 or more colors when d = 1). If proper coloring is replaced with any shift of finite type in dimension 1, then, apart from trivial cases, tower function behavior also applies.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/16-AOP1127</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2017-09, Vol.45 (5), p.2867-2898
issn 0091-1798
2168-894X
language eng
recordid cdi_proquest_journals_1961432554
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Coloring
Graph coloring
Labels
Studies
title FINITARY COLORING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINITARY%20COLORING&rft.jtitle=The%20Annals%20of%20probability&rft.au=Holroyd,%20Alexander%20E.&rft.date=2017-09-01&rft.volume=45&rft.issue=5&rft.spage=2867&rft.epage=2898&rft.pages=2867-2898&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/16-AOP1127&rft_dat=%3Cjstor_proqu%3E26362520%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961432554&rft_id=info:pmid/&rft_jstor_id=26362520&rfr_iscdi=true