Monte Carlo housing stock model to predict the energy performance indicators
This study presents a new physics-based model of housing stock energy using Monte Carlo, where inputs are probability distribution functions originated from Energy Performance Certification (EPC) Portuguese database. The overall performance of the model in predicting the energy indicators used in EP...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2017-10, Vol.152, p.503-515 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | |
container_start_page | 503 |
container_title | Energy and buildings |
container_volume | 152 |
creator | Fonseca, J.N.B. Oliveira Panão, Marta J.N. |
description | This study presents a new physics-based model of housing stock energy using Monte Carlo, where inputs are probability distribution functions originated from Energy Performance Certification (EPC) Portuguese database. The overall performance of the model in predicting the energy indicators used in EPC is extremely satisfactory, considering that the inputs required to run the calculations are not always available. The model outputs are validated against EPC data with residual sum of squares (RSS) below 2×10−3, except for cooling energy benchmark with RSS below 4×10−2. The main output of EPC, the distribution among classes, is successfully reproduced by the model, with differences in the number of occurrences below 3.1%. The developed model constitutes a tool that helps on further research on energy policies, namely, studying the impact evaluation of more restrictive thermal quality requirements; evaluating other methodological approaches to calculate energy indicators; analysing policies of building elements retrofitting and bottom-up estimations of housing stock energy consumption. |
doi_str_mv | 10.1016/j.enbuild.2017.07.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961431950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778817308915</els_id><sourcerecordid>1961431950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-b3f636045fb6531a75278f3d776b131643b4350f197b87889e3bcb9c6d00a5083</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EIeBz683SJO2TyPALJr7oc2jT2y21a2qSCfv3ZmzvwoH7cM85955DyC2DnAGT932OY7OzQ5svgKkcEkR1RmasVItMMlWekxlwVWZKleUluQqhBwApFJuR1bsbI9Jl7QdHN24X7LimITrzTbeuxYFGRyePrTWRxg1SHNGv93RC3zm_rUeD1I5pW0fnwzW56Ooh4M1pzsnX89Pn8jVbfby8LR9XmeEVxKzhneQSCtE1UnBWK7FQZcdbpWTDOJMFbwouoGOVasr0coW8MU1lZAtQCyj5nNwdfSfvfnYYou7dzo_ppGaVZAVnlYDEEkeW8S4Ej52evN3Wfq8Z6ENxuten4vShOA0Jokq6h6MOU4Rfi14HYzElba1HE3Xr7D8OfxRXeLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961431950</pqid></control><display><type>article</type><title>Monte Carlo housing stock model to predict the energy performance indicators</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fonseca, J.N.B. ; Oliveira Panão, Marta J.N.</creator><creatorcontrib>Fonseca, J.N.B. ; Oliveira Panão, Marta J.N.</creatorcontrib><description>This study presents a new physics-based model of housing stock energy using Monte Carlo, where inputs are probability distribution functions originated from Energy Performance Certification (EPC) Portuguese database. The overall performance of the model in predicting the energy indicators used in EPC is extremely satisfactory, considering that the inputs required to run the calculations are not always available. The model outputs are validated against EPC data with residual sum of squares (RSS) below 2×10−3, except for cooling energy benchmark with RSS below 4×10−2. The main output of EPC, the distribution among classes, is successfully reproduced by the model, with differences in the number of occurrences below 3.1%. The developed model constitutes a tool that helps on further research on energy policies, namely, studying the impact evaluation of more restrictive thermal quality requirements; evaluating other methodological approaches to calculate energy indicators; analysing policies of building elements retrofitting and bottom-up estimations of housing stock energy consumption.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2017.07.059</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bottom-up model ; Business metrics ; Computer simulation ; Distribution functions ; Energy consumption ; Energy distribution ; Energy indicators ; Energy policy ; Housing ; Housing stock ; Indicators ; Mathematical models ; Monte Carlo ; Monte Carlo simulation ; Physics ; Physics-based model ; Probability distribution ; Probability distribution functions ; Retrofitting ; Studies</subject><ispartof>Energy and buildings, 2017-10, Vol.152, p.503-515</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-b3f636045fb6531a75278f3d776b131643b4350f197b87889e3bcb9c6d00a5083</citedby><cites>FETCH-LOGICAL-c390t-b3f636045fb6531a75278f3d776b131643b4350f197b87889e3bcb9c6d00a5083</cites><orcidid>0000-0002-5759-6330 ; 0000-0002-5958-6830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2017.07.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fonseca, J.N.B.</creatorcontrib><creatorcontrib>Oliveira Panão, Marta J.N.</creatorcontrib><title>Monte Carlo housing stock model to predict the energy performance indicators</title><title>Energy and buildings</title><description>This study presents a new physics-based model of housing stock energy using Monte Carlo, where inputs are probability distribution functions originated from Energy Performance Certification (EPC) Portuguese database. The overall performance of the model in predicting the energy indicators used in EPC is extremely satisfactory, considering that the inputs required to run the calculations are not always available. The model outputs are validated against EPC data with residual sum of squares (RSS) below 2×10−3, except for cooling energy benchmark with RSS below 4×10−2. The main output of EPC, the distribution among classes, is successfully reproduced by the model, with differences in the number of occurrences below 3.1%. The developed model constitutes a tool that helps on further research on energy policies, namely, studying the impact evaluation of more restrictive thermal quality requirements; evaluating other methodological approaches to calculate energy indicators; analysing policies of building elements retrofitting and bottom-up estimations of housing stock energy consumption.</description><subject>Bottom-up model</subject><subject>Business metrics</subject><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Energy consumption</subject><subject>Energy distribution</subject><subject>Energy indicators</subject><subject>Energy policy</subject><subject>Housing</subject><subject>Housing stock</subject><subject>Indicators</subject><subject>Mathematical models</subject><subject>Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>Physics</subject><subject>Physics-based model</subject><subject>Probability distribution</subject><subject>Probability distribution functions</subject><subject>Retrofitting</subject><subject>Studies</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4EIeBz683SJO2TyPALJr7oc2jT2y21a2qSCfv3ZmzvwoH7cM85955DyC2DnAGT932OY7OzQ5svgKkcEkR1RmasVItMMlWekxlwVWZKleUluQqhBwApFJuR1bsbI9Jl7QdHN24X7LimITrzTbeuxYFGRyePrTWRxg1SHNGv93RC3zm_rUeD1I5pW0fnwzW56Ooh4M1pzsnX89Pn8jVbfby8LR9XmeEVxKzhneQSCtE1UnBWK7FQZcdbpWTDOJMFbwouoGOVasr0coW8MU1lZAtQCyj5nNwdfSfvfnYYou7dzo_ppGaVZAVnlYDEEkeW8S4Ej52evN3Wfq8Z6ENxuten4vShOA0Jokq6h6MOU4Rfi14HYzElba1HE3Xr7D8OfxRXeLc</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Fonseca, J.N.B.</creator><creator>Oliveira Panão, Marta J.N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5759-6330</orcidid><orcidid>https://orcid.org/0000-0002-5958-6830</orcidid></search><sort><creationdate>20171001</creationdate><title>Monte Carlo housing stock model to predict the energy performance indicators</title><author>Fonseca, J.N.B. ; Oliveira Panão, Marta J.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-b3f636045fb6531a75278f3d776b131643b4350f197b87889e3bcb9c6d00a5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bottom-up model</topic><topic>Business metrics</topic><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Energy consumption</topic><topic>Energy distribution</topic><topic>Energy indicators</topic><topic>Energy policy</topic><topic>Housing</topic><topic>Housing stock</topic><topic>Indicators</topic><topic>Mathematical models</topic><topic>Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>Physics</topic><topic>Physics-based model</topic><topic>Probability distribution</topic><topic>Probability distribution functions</topic><topic>Retrofitting</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca, J.N.B.</creatorcontrib><creatorcontrib>Oliveira Panão, Marta J.N.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca, J.N.B.</au><au>Oliveira Panão, Marta J.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo housing stock model to predict the energy performance indicators</atitle><jtitle>Energy and buildings</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>152</volume><spage>503</spage><epage>515</epage><pages>503-515</pages><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>This study presents a new physics-based model of housing stock energy using Monte Carlo, where inputs are probability distribution functions originated from Energy Performance Certification (EPC) Portuguese database. The overall performance of the model in predicting the energy indicators used in EPC is extremely satisfactory, considering that the inputs required to run the calculations are not always available. The model outputs are validated against EPC data with residual sum of squares (RSS) below 2×10−3, except for cooling energy benchmark with RSS below 4×10−2. The main output of EPC, the distribution among classes, is successfully reproduced by the model, with differences in the number of occurrences below 3.1%. The developed model constitutes a tool that helps on further research on energy policies, namely, studying the impact evaluation of more restrictive thermal quality requirements; evaluating other methodological approaches to calculate energy indicators; analysing policies of building elements retrofitting and bottom-up estimations of housing stock energy consumption.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2017.07.059</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5759-6330</orcidid><orcidid>https://orcid.org/0000-0002-5958-6830</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2017-10, Vol.152, p.503-515 |
issn | 0378-7788 1872-6178 |
language | eng |
recordid | cdi_proquest_journals_1961431950 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bottom-up model Business metrics Computer simulation Distribution functions Energy consumption Energy distribution Energy indicators Energy policy Housing Housing stock Indicators Mathematical models Monte Carlo Monte Carlo simulation Physics Physics-based model Probability distribution Probability distribution functions Retrofitting Studies |
title | Monte Carlo housing stock model to predict the energy performance indicators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20housing%20stock%20model%20to%20predict%20the%20energy%20performance%20indicators&rft.jtitle=Energy%20and%20buildings&rft.au=Fonseca,%20J.N.B.&rft.date=2017-10-01&rft.volume=152&rft.spage=503&rft.epage=515&rft.pages=503-515&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2017.07.059&rft_dat=%3Cproquest_cross%3E1961431950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961431950&rft_id=info:pmid/&rft_els_id=S0378778817308915&rfr_iscdi=true |