Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries

In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2017-09, Vol.247, p.569-587
Hauptverfasser: Ghalkhani, Maryam, Bahiraei, Farid, Nazri, Gholam-Abbas, Saif, Mehrdad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue
container_start_page 569
container_title Electrochimica acta
container_volume 247
creator Ghalkhani, Maryam
Bahiraei, Farid
Nazri, Gholam-Abbas
Saif, Mehrdad
description In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems.
doi_str_mv 10.1016/j.electacta.2017.06.164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961429309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468617314020</els_id><sourcerecordid>1961429309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</originalsourceid><addsrcrecordid>eNqFkM9KxDAQh4MouK4-gwXPrZM0TdPjuqx_YEUP6zlkkynN0m7WtBX25jv4hj6JWVa8CgMDw_ebYT5CrilkFKi43WTYohl0rIwBLTMQGRX8hEyoLPM0l0V1SiYANE-5kOKcXPT9BgBKUcKEzBeHcPCmwc4Z3X5_fq0aDJ1uk2dvsU18nbz60TTpsN9hsnRD48YudX6b3OlhwOCwvyRntW57vPrtU_J2v1jNH9Ply8PTfLZMTS5hSNecV0zUwGrQ1sqC6UKwfK35utDSGikEIpjScGkjUBaF1cjjyLJcsoKbfEpujnt3wb-P2A9q48ewjScVrQTlrMqhilR5pEzwfR-wVrvgOh32ioI6GFMb9WdMHYwpECoai8nZMYnxiQ-HQfXG4dagdSHyynr3744fR7l5yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961429309</pqid></control><display><type>article</type><title>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ghalkhani, Maryam ; Bahiraei, Farid ; Nazri, Gholam-Abbas ; Saif, Mehrdad</creator><creatorcontrib>Ghalkhani, Maryam ; Bahiraei, Farid ; Nazri, Gholam-Abbas ; Saif, Mehrdad</creatorcontrib><description>In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2017.06.164</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Computer simulation ; Current distribution ; Design optimization ; Electrochemical-thermal model ; Flux density ; Heat generation ; Lithium ; Lithium-ion batteries ; Management systems ; Mathematical models ; Modelling ; Pouch type lithium-ion battery ; Rechargeable batteries ; Simulation ; Temperature distribution ; Temperature profiles ; Thermal analysis ; Thermal management ; Three dimensional models</subject><ispartof>Electrochimica acta, 2017-09, Vol.247, p.569-587</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</citedby><cites>FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2017.06.164$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ghalkhani, Maryam</creatorcontrib><creatorcontrib>Bahiraei, Farid</creatorcontrib><creatorcontrib>Nazri, Gholam-Abbas</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><title>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</title><title>Electrochimica acta</title><description>In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems.</description><subject>Batteries</subject><subject>Computer simulation</subject><subject>Current distribution</subject><subject>Design optimization</subject><subject>Electrochemical-thermal model</subject><subject>Flux density</subject><subject>Heat generation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Pouch type lithium-ion battery</subject><subject>Rechargeable batteries</subject><subject>Simulation</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Thermal analysis</subject><subject>Thermal management</subject><subject>Three dimensional models</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KxDAQh4MouK4-gwXPrZM0TdPjuqx_YEUP6zlkkynN0m7WtBX25jv4hj6JWVa8CgMDw_ebYT5CrilkFKi43WTYohl0rIwBLTMQGRX8hEyoLPM0l0V1SiYANE-5kOKcXPT9BgBKUcKEzBeHcPCmwc4Z3X5_fq0aDJ1uk2dvsU18nbz60TTpsN9hsnRD48YudX6b3OlhwOCwvyRntW57vPrtU_J2v1jNH9Ply8PTfLZMTS5hSNecV0zUwGrQ1sqC6UKwfK35utDSGikEIpjScGkjUBaF1cjjyLJcsoKbfEpujnt3wb-P2A9q48ewjScVrQTlrMqhilR5pEzwfR-wVrvgOh32ioI6GFMb9WdMHYwpECoai8nZMYnxiQ-HQfXG4dagdSHyynr3744fR7l5yg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Ghalkhani, Maryam</creator><creator>Bahiraei, Farid</creator><creator>Nazri, Gholam-Abbas</creator><creator>Saif, Mehrdad</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170901</creationdate><title>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</title><author>Ghalkhani, Maryam ; Bahiraei, Farid ; Nazri, Gholam-Abbas ; Saif, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Batteries</topic><topic>Computer simulation</topic><topic>Current distribution</topic><topic>Design optimization</topic><topic>Electrochemical-thermal model</topic><topic>Flux density</topic><topic>Heat generation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Pouch type lithium-ion battery</topic><topic>Rechargeable batteries</topic><topic>Simulation</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Thermal analysis</topic><topic>Thermal management</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghalkhani, Maryam</creatorcontrib><creatorcontrib>Bahiraei, Farid</creatorcontrib><creatorcontrib>Nazri, Gholam-Abbas</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghalkhani, Maryam</au><au>Bahiraei, Farid</au><au>Nazri, Gholam-Abbas</au><au>Saif, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>247</volume><spage>569</spage><epage>587</epage><pages>569-587</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2017.06.164</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2017-09, Vol.247, p.569-587
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_1961429309
source ScienceDirect Journals (5 years ago - present)
subjects Batteries
Computer simulation
Current distribution
Design optimization
Electrochemical-thermal model
Flux density
Heat generation
Lithium
Lithium-ion batteries
Management systems
Mathematical models
Modelling
Pouch type lithium-ion battery
Rechargeable batteries
Simulation
Temperature distribution
Temperature profiles
Thermal analysis
Thermal management
Three dimensional models
title Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%E2%80%93Thermal%20Model%20of%20Pouch-type%20Lithium-ion%20Batteries&rft.jtitle=Electrochimica%20acta&rft.au=Ghalkhani,%20Maryam&rft.date=2017-09-01&rft.volume=247&rft.spage=569&rft.epage=587&rft.pages=569-587&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2017.06.164&rft_dat=%3Cproquest_cross%3E1961429309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961429309&rft_id=info:pmid/&rft_els_id=S0013468617314020&rfr_iscdi=true