Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries
In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2017-09, Vol.247, p.569-587 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | |
container_start_page | 569 |
container_title | Electrochimica acta |
container_volume | 247 |
creator | Ghalkhani, Maryam Bahiraei, Farid Nazri, Gholam-Abbas Saif, Mehrdad |
description | In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems. |
doi_str_mv | 10.1016/j.electacta.2017.06.164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961429309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468617314020</els_id><sourcerecordid>1961429309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</originalsourceid><addsrcrecordid>eNqFkM9KxDAQh4MouK4-gwXPrZM0TdPjuqx_YEUP6zlkkynN0m7WtBX25jv4hj6JWVa8CgMDw_ebYT5CrilkFKi43WTYohl0rIwBLTMQGRX8hEyoLPM0l0V1SiYANE-5kOKcXPT9BgBKUcKEzBeHcPCmwc4Z3X5_fq0aDJ1uk2dvsU18nbz60TTpsN9hsnRD48YudX6b3OlhwOCwvyRntW57vPrtU_J2v1jNH9Ply8PTfLZMTS5hSNecV0zUwGrQ1sqC6UKwfK35utDSGikEIpjScGkjUBaF1cjjyLJcsoKbfEpujnt3wb-P2A9q48ewjScVrQTlrMqhilR5pEzwfR-wVrvgOh32ioI6GFMb9WdMHYwpECoai8nZMYnxiQ-HQfXG4dagdSHyynr3744fR7l5yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961429309</pqid></control><display><type>article</type><title>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ghalkhani, Maryam ; Bahiraei, Farid ; Nazri, Gholam-Abbas ; Saif, Mehrdad</creator><creatorcontrib>Ghalkhani, Maryam ; Bahiraei, Farid ; Nazri, Gholam-Abbas ; Saif, Mehrdad</creatorcontrib><description>In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2017.06.164</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Computer simulation ; Current distribution ; Design optimization ; Electrochemical-thermal model ; Flux density ; Heat generation ; Lithium ; Lithium-ion batteries ; Management systems ; Mathematical models ; Modelling ; Pouch type lithium-ion battery ; Rechargeable batteries ; Simulation ; Temperature distribution ; Temperature profiles ; Thermal analysis ; Thermal management ; Three dimensional models</subject><ispartof>Electrochimica acta, 2017-09, Vol.247, p.569-587</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</citedby><cites>FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2017.06.164$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ghalkhani, Maryam</creatorcontrib><creatorcontrib>Bahiraei, Farid</creatorcontrib><creatorcontrib>Nazri, Gholam-Abbas</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><title>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</title><title>Electrochimica acta</title><description>In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems.</description><subject>Batteries</subject><subject>Computer simulation</subject><subject>Current distribution</subject><subject>Design optimization</subject><subject>Electrochemical-thermal model</subject><subject>Flux density</subject><subject>Heat generation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Pouch type lithium-ion battery</subject><subject>Rechargeable batteries</subject><subject>Simulation</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Thermal analysis</subject><subject>Thermal management</subject><subject>Three dimensional models</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KxDAQh4MouK4-gwXPrZM0TdPjuqx_YEUP6zlkkynN0m7WtBX25jv4hj6JWVa8CgMDw_ebYT5CrilkFKi43WTYohl0rIwBLTMQGRX8hEyoLPM0l0V1SiYANE-5kOKcXPT9BgBKUcKEzBeHcPCmwc4Z3X5_fq0aDJ1uk2dvsU18nbz60TTpsN9hsnRD48YudX6b3OlhwOCwvyRntW57vPrtU_J2v1jNH9Ply8PTfLZMTS5hSNecV0zUwGrQ1sqC6UKwfK35utDSGikEIpjScGkjUBaF1cjjyLJcsoKbfEpujnt3wb-P2A9q48ewjScVrQTlrMqhilR5pEzwfR-wVrvgOh32ioI6GFMb9WdMHYwpECoai8nZMYnxiQ-HQfXG4dagdSHyynr3744fR7l5yg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Ghalkhani, Maryam</creator><creator>Bahiraei, Farid</creator><creator>Nazri, Gholam-Abbas</creator><creator>Saif, Mehrdad</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170901</creationdate><title>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</title><author>Ghalkhani, Maryam ; Bahiraei, Farid ; Nazri, Gholam-Abbas ; Saif, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b44926f02f0add852a5623ba4b5a8dc866ee0c7c48d0ad755dae4ee0d238254c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Batteries</topic><topic>Computer simulation</topic><topic>Current distribution</topic><topic>Design optimization</topic><topic>Electrochemical-thermal model</topic><topic>Flux density</topic><topic>Heat generation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Pouch type lithium-ion battery</topic><topic>Rechargeable batteries</topic><topic>Simulation</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Thermal analysis</topic><topic>Thermal management</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghalkhani, Maryam</creatorcontrib><creatorcontrib>Bahiraei, Farid</creatorcontrib><creatorcontrib>Nazri, Gholam-Abbas</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghalkhani, Maryam</au><au>Bahiraei, Farid</au><au>Nazri, Gholam-Abbas</au><au>Saif, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>247</volume><spage>569</spage><epage>587</epage><pages>569-587</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2017.06.164</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2017-09, Vol.247, p.569-587 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_1961429309 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Batteries Computer simulation Current distribution Design optimization Electrochemical-thermal model Flux density Heat generation Lithium Lithium-ion batteries Management systems Mathematical models Modelling Pouch type lithium-ion battery Rechargeable batteries Simulation Temperature distribution Temperature profiles Thermal analysis Thermal management Three dimensional models |
title | Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%E2%80%93Thermal%20Model%20of%20Pouch-type%20Lithium-ion%20Batteries&rft.jtitle=Electrochimica%20acta&rft.au=Ghalkhani,%20Maryam&rft.date=2017-09-01&rft.volume=247&rft.spage=569&rft.epage=587&rft.pages=569-587&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2017.06.164&rft_dat=%3Cproquest_cross%3E1961429309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961429309&rft_id=info:pmid/&rft_els_id=S0013468617314020&rfr_iscdi=true |