Dynamic optimization of natural gas networks under customer demand uncertainties
In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty. A pla...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2017-09, Vol.134, p.968-983 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 983 |
---|---|
container_issue | |
container_start_page | 968 |
container_title | Energy (Oxford) |
container_volume | 134 |
creator | Ahmadian Behrooz, Hesam Boozarjomehry, R. Bozorgmehry |
description | In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty.
A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties.
[Display omitted]
•Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated. |
doi_str_mv | 10.1016/j.energy.2017.06.087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961425429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544217310812</els_id><sourcerecordid>1961425429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Fz61JmibpRZD1LyzoQc8hm06X1G2yJqmyfnqzrGdPM8y8N8P7IXRJcEUw4ddDBQ7CeldRTESFeYWlOEIzIkVdciGbYzTDNcdlwxg9RWcxDhjjRrbtDL3e7ZwerSn8NtnR_uhkvSt8XzidpqA3xVrHwkH69uEjFpPrIBRmismPuelg1K7LUwMhaeuShXiOTnq9iXDxV-fo_eH-bfFULl8enxe3y9LUUqRScmk0w4BN3VHdkaYHIvp-pSkH6FaS4nbFWt2wXra1MVJTwYjkNO8Eboys5-jqcHcb_OcEManBT8Hll4q0nDDaMNpmFTuoTPAxBujVNthRh50iWO3ZqUEd2Kk9O4W5yuyy7eZgg5zgy0JQ0VjIMTsbwCTVefv_gV8MdHug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961425429</pqid></control><display><type>article</type><title>Dynamic optimization of natural gas networks under customer demand uncertainties</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ahmadian Behrooz, Hesam ; Boozarjomehry, R. Bozorgmehry</creator><creatorcontrib>Ahmadian Behrooz, Hesam ; Boozarjomehry, R. Bozorgmehry</creatorcontrib><description>In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty.
A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties.
[Display omitted]
•Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2017.06.087</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Compression ; Computer simulation ; Demand ; Electric power generation ; Electric power plants ; Energy consumption ; Flow rates ; Flow velocity ; Gas transmission ; Gas-fired power plants ; High-pressure gas networks ; Loads (forces) ; Natural gas ; Networks ; Optimization ; Parameter uncertainty ; Planning ; Power plants ; Propagation ; Stochastic models ; Stochastic optimization ; Supply-demand forecasting ; Uncertainty ; Unscented transformation</subject><ispartof>Energy (Oxford), 2017-09, Vol.134, p.968-983</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</citedby><cites>FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</cites><orcidid>0000-0002-0219-6831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2017.06.087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Ahmadian Behrooz, Hesam</creatorcontrib><creatorcontrib>Boozarjomehry, R. Bozorgmehry</creatorcontrib><title>Dynamic optimization of natural gas networks under customer demand uncertainties</title><title>Energy (Oxford)</title><description>In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty.
A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties.
[Display omitted]
•Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated.</description><subject>Compression</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Energy consumption</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Gas transmission</subject><subject>Gas-fired power plants</subject><subject>High-pressure gas networks</subject><subject>Loads (forces)</subject><subject>Natural gas</subject><subject>Networks</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Planning</subject><subject>Power plants</subject><subject>Propagation</subject><subject>Stochastic models</subject><subject>Stochastic optimization</subject><subject>Supply-demand forecasting</subject><subject>Uncertainty</subject><subject>Unscented transformation</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Fz61JmibpRZD1LyzoQc8hm06X1G2yJqmyfnqzrGdPM8y8N8P7IXRJcEUw4ddDBQ7CeldRTESFeYWlOEIzIkVdciGbYzTDNcdlwxg9RWcxDhjjRrbtDL3e7ZwerSn8NtnR_uhkvSt8XzidpqA3xVrHwkH69uEjFpPrIBRmismPuelg1K7LUwMhaeuShXiOTnq9iXDxV-fo_eH-bfFULl8enxe3y9LUUqRScmk0w4BN3VHdkaYHIvp-pSkH6FaS4nbFWt2wXra1MVJTwYjkNO8Eboys5-jqcHcb_OcEManBT8Hll4q0nDDaMNpmFTuoTPAxBujVNthRh50iWO3ZqUEd2Kk9O4W5yuyy7eZgg5zgy0JQ0VjIMTsbwCTVefv_gV8MdHug</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Ahmadian Behrooz, Hesam</creator><creator>Boozarjomehry, R. Bozorgmehry</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0219-6831</orcidid></search><sort><creationdate>20170901</creationdate><title>Dynamic optimization of natural gas networks under customer demand uncertainties</title><author>Ahmadian Behrooz, Hesam ; Boozarjomehry, R. Bozorgmehry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compression</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Energy consumption</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Gas transmission</topic><topic>Gas-fired power plants</topic><topic>High-pressure gas networks</topic><topic>Loads (forces)</topic><topic>Natural gas</topic><topic>Networks</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Planning</topic><topic>Power plants</topic><topic>Propagation</topic><topic>Stochastic models</topic><topic>Stochastic optimization</topic><topic>Supply-demand forecasting</topic><topic>Uncertainty</topic><topic>Unscented transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadian Behrooz, Hesam</creatorcontrib><creatorcontrib>Boozarjomehry, R. Bozorgmehry</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadian Behrooz, Hesam</au><au>Boozarjomehry, R. Bozorgmehry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic optimization of natural gas networks under customer demand uncertainties</atitle><jtitle>Energy (Oxford)</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>134</volume><spage>968</spage><epage>983</epage><pages>968-983</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty.
A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties.
[Display omitted]
•Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2017.06.087</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0219-6831</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2017-09, Vol.134, p.968-983 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_1961425429 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Compression Computer simulation Demand Electric power generation Electric power plants Energy consumption Flow rates Flow velocity Gas transmission Gas-fired power plants High-pressure gas networks Loads (forces) Natural gas Networks Optimization Parameter uncertainty Planning Power plants Propagation Stochastic models Stochastic optimization Supply-demand forecasting Uncertainty Unscented transformation |
title | Dynamic optimization of natural gas networks under customer demand uncertainties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20optimization%20of%20natural%20gas%20networks%20under%20customer%20demand%20uncertainties&rft.jtitle=Energy%20(Oxford)&rft.au=Ahmadian%20Behrooz,%20Hesam&rft.date=2017-09-01&rft.volume=134&rft.spage=968&rft.epage=983&rft.pages=968-983&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2017.06.087&rft_dat=%3Cproquest_cross%3E1961425429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961425429&rft_id=info:pmid/&rft_els_id=S0360544217310812&rfr_iscdi=true |