Dynamic optimization of natural gas networks under customer demand uncertainties

In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty. A pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2017-09, Vol.134, p.968-983
Hauptverfasser: Ahmadian Behrooz, Hesam, Boozarjomehry, R. Bozorgmehry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 983
container_issue
container_start_page 968
container_title Energy (Oxford)
container_volume 134
creator Ahmadian Behrooz, Hesam
Boozarjomehry, R. Bozorgmehry
description In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty. A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties. [Display omitted] •Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated.
doi_str_mv 10.1016/j.energy.2017.06.087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961425429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544217310812</els_id><sourcerecordid>1961425429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Fz61JmibpRZD1LyzoQc8hm06X1G2yJqmyfnqzrGdPM8y8N8P7IXRJcEUw4ddDBQ7CeldRTESFeYWlOEIzIkVdciGbYzTDNcdlwxg9RWcxDhjjRrbtDL3e7ZwerSn8NtnR_uhkvSt8XzidpqA3xVrHwkH69uEjFpPrIBRmismPuelg1K7LUwMhaeuShXiOTnq9iXDxV-fo_eH-bfFULl8enxe3y9LUUqRScmk0w4BN3VHdkaYHIvp-pSkH6FaS4nbFWt2wXra1MVJTwYjkNO8Eboys5-jqcHcb_OcEManBT8Hll4q0nDDaMNpmFTuoTPAxBujVNthRh50iWO3ZqUEd2Kk9O4W5yuyy7eZgg5zgy0JQ0VjIMTsbwCTVefv_gV8MdHug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961425429</pqid></control><display><type>article</type><title>Dynamic optimization of natural gas networks under customer demand uncertainties</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ahmadian Behrooz, Hesam ; Boozarjomehry, R. Bozorgmehry</creator><creatorcontrib>Ahmadian Behrooz, Hesam ; Boozarjomehry, R. Bozorgmehry</creatorcontrib><description>In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty. A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties. [Display omitted] •Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2017.06.087</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Compression ; Computer simulation ; Demand ; Electric power generation ; Electric power plants ; Energy consumption ; Flow rates ; Flow velocity ; Gas transmission ; Gas-fired power plants ; High-pressure gas networks ; Loads (forces) ; Natural gas ; Networks ; Optimization ; Parameter uncertainty ; Planning ; Power plants ; Propagation ; Stochastic models ; Stochastic optimization ; Supply-demand forecasting ; Uncertainty ; Unscented transformation</subject><ispartof>Energy (Oxford), 2017-09, Vol.134, p.968-983</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</citedby><cites>FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</cites><orcidid>0000-0002-0219-6831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2017.06.087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Ahmadian Behrooz, Hesam</creatorcontrib><creatorcontrib>Boozarjomehry, R. Bozorgmehry</creatorcontrib><title>Dynamic optimization of natural gas networks under customer demand uncertainties</title><title>Energy (Oxford)</title><description>In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty. A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties. [Display omitted] •Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated.</description><subject>Compression</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Energy consumption</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Gas transmission</subject><subject>Gas-fired power plants</subject><subject>High-pressure gas networks</subject><subject>Loads (forces)</subject><subject>Natural gas</subject><subject>Networks</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Planning</subject><subject>Power plants</subject><subject>Propagation</subject><subject>Stochastic models</subject><subject>Stochastic optimization</subject><subject>Supply-demand forecasting</subject><subject>Uncertainty</subject><subject>Unscented transformation</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Fz61JmibpRZD1LyzoQc8hm06X1G2yJqmyfnqzrGdPM8y8N8P7IXRJcEUw4ddDBQ7CeldRTESFeYWlOEIzIkVdciGbYzTDNcdlwxg9RWcxDhjjRrbtDL3e7ZwerSn8NtnR_uhkvSt8XzidpqA3xVrHwkH69uEjFpPrIBRmismPuelg1K7LUwMhaeuShXiOTnq9iXDxV-fo_eH-bfFULl8enxe3y9LUUqRScmk0w4BN3VHdkaYHIvp-pSkH6FaS4nbFWt2wXra1MVJTwYjkNO8Eboys5-jqcHcb_OcEManBT8Hll4q0nDDaMNpmFTuoTPAxBujVNthRh50iWO3ZqUEd2Kk9O4W5yuyy7eZgg5zgy0JQ0VjIMTsbwCTVefv_gV8MdHug</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Ahmadian Behrooz, Hesam</creator><creator>Boozarjomehry, R. Bozorgmehry</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0219-6831</orcidid></search><sort><creationdate>20170901</creationdate><title>Dynamic optimization of natural gas networks under customer demand uncertainties</title><author>Ahmadian Behrooz, Hesam ; Boozarjomehry, R. Bozorgmehry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-868ca40e0c3d2ad15fe17ffba26eedb8209b49a54f893cc8a2741862edb705c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compression</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Energy consumption</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Gas transmission</topic><topic>Gas-fired power plants</topic><topic>High-pressure gas networks</topic><topic>Loads (forces)</topic><topic>Natural gas</topic><topic>Networks</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Planning</topic><topic>Power plants</topic><topic>Propagation</topic><topic>Stochastic models</topic><topic>Stochastic optimization</topic><topic>Supply-demand forecasting</topic><topic>Uncertainty</topic><topic>Unscented transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadian Behrooz, Hesam</creatorcontrib><creatorcontrib>Boozarjomehry, R. Bozorgmehry</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadian Behrooz, Hesam</au><au>Boozarjomehry, R. Bozorgmehry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic optimization of natural gas networks under customer demand uncertainties</atitle><jtitle>Energy (Oxford)</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>134</volume><spage>968</spage><epage>983</epage><pages>968-983</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In natural gas transmission networks, the efficiency of daily operation is strongly dependent on our knowledge about the customer future demands. Unavailability of accurate demand forecasts makes it more important to be able to characterize the loads and quantify the corresponding uncertainty. A planning strategy for natural gas transmission networks under future demand uncertainty is addressed, which involves coupling of a gas transmission network dynamic simulator with the stochastic optimization framework. Loads from a gas-fired power plant are studied where the loads are characterized by a number of uncertain parameters, and unscented transform is utilized for uncertainty propagation. This algorithm is compared to deterministic approaches in terms of energy consumption, supply flow rate and line-pack manipulations by means of an illustrative example where 1% increase in energy requirement is observed for stochastic formulation compared to expected condition while 10% extra energy is required for the worst case scenario. It is also shown that preparation for uncertain future loads can be done with appropriate management of the available compression units, without further natural gas supplies. Stochastic programming provides an optimal way to determine the minimum pressure buffer required at delivery points for safe operation of the network under customer demand uncertainties. [Display omitted] •Optimal operation and daily planning of natural gas networks are addressed.•An optimization framework for handling customer demand uncertainties is proposed.•Application of unscented transform in chance constrained optimization is shown.•Uncertain load of gas-fired power plant is characterized.•Role of line-pack manipulation strategy in uncertain load handling is illustrated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2017.06.087</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0219-6831</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2017-09, Vol.134, p.968-983
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_1961425429
source ScienceDirect Journals (5 years ago - present)
subjects Compression
Computer simulation
Demand
Electric power generation
Electric power plants
Energy consumption
Flow rates
Flow velocity
Gas transmission
Gas-fired power plants
High-pressure gas networks
Loads (forces)
Natural gas
Networks
Optimization
Parameter uncertainty
Planning
Power plants
Propagation
Stochastic models
Stochastic optimization
Supply-demand forecasting
Uncertainty
Unscented transformation
title Dynamic optimization of natural gas networks under customer demand uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20optimization%20of%20natural%20gas%20networks%20under%20customer%20demand%20uncertainties&rft.jtitle=Energy%20(Oxford)&rft.au=Ahmadian%20Behrooz,%20Hesam&rft.date=2017-09-01&rft.volume=134&rft.spage=968&rft.epage=983&rft.pages=968-983&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2017.06.087&rft_dat=%3Cproquest_cross%3E1961425429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961425429&rft_id=info:pmid/&rft_els_id=S0360544217310812&rfr_iscdi=true