A hybrid method for forecasting river-suspended sediments in Iran

Estimation of sediment mass carried by rivers is an important issue in Hydrological Sciences. The main purpose of this research was to find an appropriate method to compute sediment discharge. Some machine-learning approaches have been used to forecast river-suspended sediments, correctly. One of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of river basin management 2017-10, Vol.15 (4), p.453-460
Hauptverfasser: Tavakoli Targhi, Alireza, Abbaszadeh, Sadegh, Arabasadi, Zeinab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 4
container_start_page 453
container_title International journal of river basin management
container_volume 15
creator Tavakoli Targhi, Alireza
Abbaszadeh, Sadegh
Arabasadi, Zeinab
description Estimation of sediment mass carried by rivers is an important issue in Hydrological Sciences. The main purpose of this research was to find an appropriate method to compute sediment discharge. Some machine-learning approaches have been used to forecast river-suspended sediments, correctly. One of the most effective and traditional approaches for forecasting events is to use artificial neural networks (ANNs). So, we are going to improve the performance of ANNs in estimation of suspended sediments, upon a data of Baba Aman basin in Iran. We first apply a typical neural network and obtain the root-mean-square-error of and the correlation coefficient of . Then, to improve the prediction ability of ANNs, we hybridize this method with cuckoo optimization algorithm (COA). Combination of ANNs with COA causes reduction in root-mean-square-error to , increasing in correlation coefficient to and also proposing a better model.
doi_str_mv 10.1080/15715124.2017.1315815
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1961409342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961409342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-edd14374f9b4ac10a8aafd255b19582f94305c13ca948840769274946ebb0c0a3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_QQh43jqzSXaTm6VoLRS86Dlkk6xN6e7WZKv037tL69XDMHN47w3vI-QeYYYg4RFFiQJzPssByxkyFBLFBZmgRJ7lUMDlcA-abBRdk5uUtgCiEBwmZD6nm2MVg6ON7zedo3UXx_HWpD60nzSGbx-zdEh73zrvaPIuNL7tEw0tXUXT3pKr2uySvzvvKfl4eX5fvGbrt-VqMV9nljHZZ9455Kzktaq4sQhGGlO7XIgKlZB5rTgDYZFZo7iUHMpC5SVXvPBVBRYMm5KHU-4-dl8Hn3q97Q6xHV5qVAVyUIzng0qcVDZ2KUVf630MjYlHjaBHWvqPlh5p6TOtwfd08oV2aN-Yny7unO7NcdfFemhpQ9Ls_4hfY11vmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961409342</pqid></control><display><type>article</type><title>A hybrid method for forecasting river-suspended sediments in Iran</title><source>Taylor &amp; Francis Journals Complete</source><creator>Tavakoli Targhi, Alireza ; Abbaszadeh, Sadegh ; Arabasadi, Zeinab</creator><creatorcontrib>Tavakoli Targhi, Alireza ; Abbaszadeh, Sadegh ; Arabasadi, Zeinab</creatorcontrib><description>Estimation of sediment mass carried by rivers is an important issue in Hydrological Sciences. The main purpose of this research was to find an appropriate method to compute sediment discharge. Some machine-learning approaches have been used to forecast river-suspended sediments, correctly. One of the most effective and traditional approaches for forecasting events is to use artificial neural networks (ANNs). So, we are going to improve the performance of ANNs in estimation of suspended sediments, upon a data of Baba Aman basin in Iran. We first apply a typical neural network and obtain the root-mean-square-error of and the correlation coefficient of . Then, to improve the prediction ability of ANNs, we hybridize this method with cuckoo optimization algorithm (COA). Combination of ANNs with COA causes reduction in root-mean-square-error to , increasing in correlation coefficient to and also proposing a better model.</description><identifier>ISSN: 1571-5124</identifier><identifier>EISSN: 1814-2060</identifier><identifier>DOI: 10.1080/15715124.2017.1315815</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>artificial neural network ; Artificial neural networks ; Correlation coefficient ; Correlation coefficients ; cuckoo optimization algorithm ; discharge ; Fluvial sediments ; Forecasting ; Hydrology ; Learning algorithms ; Machine learning ; Mathematical models ; Methods ; Neural networks ; River forecasting ; Rivers ; Sediment ; Sediment discharge ; Sediments ; Suspended sediments</subject><ispartof>International journal of river basin management, 2017-10, Vol.15 (4), p.453-460</ispartof><rights>2017 International Association for Hydro-Environment Engineering and Research 2017</rights><rights>2017 International Association for Hydro-Environment Engineering and Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-edd14374f9b4ac10a8aafd255b19582f94305c13ca948840769274946ebb0c0a3</citedby><cites>FETCH-LOGICAL-c338t-edd14374f9b4ac10a8aafd255b19582f94305c13ca948840769274946ebb0c0a3</cites><orcidid>0000-0002-8257-0116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/15715124.2017.1315815$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/15715124.2017.1315815$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Tavakoli Targhi, Alireza</creatorcontrib><creatorcontrib>Abbaszadeh, Sadegh</creatorcontrib><creatorcontrib>Arabasadi, Zeinab</creatorcontrib><title>A hybrid method for forecasting river-suspended sediments in Iran</title><title>International journal of river basin management</title><description>Estimation of sediment mass carried by rivers is an important issue in Hydrological Sciences. The main purpose of this research was to find an appropriate method to compute sediment discharge. Some machine-learning approaches have been used to forecast river-suspended sediments, correctly. One of the most effective and traditional approaches for forecasting events is to use artificial neural networks (ANNs). So, we are going to improve the performance of ANNs in estimation of suspended sediments, upon a data of Baba Aman basin in Iran. We first apply a typical neural network and obtain the root-mean-square-error of and the correlation coefficient of . Then, to improve the prediction ability of ANNs, we hybridize this method with cuckoo optimization algorithm (COA). Combination of ANNs with COA causes reduction in root-mean-square-error to , increasing in correlation coefficient to and also proposing a better model.</description><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>cuckoo optimization algorithm</subject><subject>discharge</subject><subject>Fluvial sediments</subject><subject>Forecasting</subject><subject>Hydrology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Neural networks</subject><subject>River forecasting</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sediment discharge</subject><subject>Sediments</subject><subject>Suspended sediments</subject><issn>1571-5124</issn><issn>1814-2060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_QQh43jqzSXaTm6VoLRS86Dlkk6xN6e7WZKv037tL69XDMHN47w3vI-QeYYYg4RFFiQJzPssByxkyFBLFBZmgRJ7lUMDlcA-abBRdk5uUtgCiEBwmZD6nm2MVg6ON7zedo3UXx_HWpD60nzSGbx-zdEh73zrvaPIuNL7tEw0tXUXT3pKr2uySvzvvKfl4eX5fvGbrt-VqMV9nljHZZ9455Kzktaq4sQhGGlO7XIgKlZB5rTgDYZFZo7iUHMpC5SVXvPBVBRYMm5KHU-4-dl8Hn3q97Q6xHV5qVAVyUIzng0qcVDZ2KUVf630MjYlHjaBHWvqPlh5p6TOtwfd08oV2aN-Yny7unO7NcdfFemhpQ9Ls_4hfY11vmQ</recordid><startdate>20171002</startdate><enddate>20171002</enddate><creator>Tavakoli Targhi, Alireza</creator><creator>Abbaszadeh, Sadegh</creator><creator>Arabasadi, Zeinab</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-8257-0116</orcidid></search><sort><creationdate>20171002</creationdate><title>A hybrid method for forecasting river-suspended sediments in Iran</title><author>Tavakoli Targhi, Alireza ; Abbaszadeh, Sadegh ; Arabasadi, Zeinab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-edd14374f9b4ac10a8aafd255b19582f94305c13ca948840769274946ebb0c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>cuckoo optimization algorithm</topic><topic>discharge</topic><topic>Fluvial sediments</topic><topic>Forecasting</topic><topic>Hydrology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Neural networks</topic><topic>River forecasting</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sediment discharge</topic><topic>Sediments</topic><topic>Suspended sediments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavakoli Targhi, Alireza</creatorcontrib><creatorcontrib>Abbaszadeh, Sadegh</creatorcontrib><creatorcontrib>Arabasadi, Zeinab</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of river basin management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavakoli Targhi, Alireza</au><au>Abbaszadeh, Sadegh</au><au>Arabasadi, Zeinab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid method for forecasting river-suspended sediments in Iran</atitle><jtitle>International journal of river basin management</jtitle><date>2017-10-02</date><risdate>2017</risdate><volume>15</volume><issue>4</issue><spage>453</spage><epage>460</epage><pages>453-460</pages><issn>1571-5124</issn><eissn>1814-2060</eissn><abstract>Estimation of sediment mass carried by rivers is an important issue in Hydrological Sciences. The main purpose of this research was to find an appropriate method to compute sediment discharge. Some machine-learning approaches have been used to forecast river-suspended sediments, correctly. One of the most effective and traditional approaches for forecasting events is to use artificial neural networks (ANNs). So, we are going to improve the performance of ANNs in estimation of suspended sediments, upon a data of Baba Aman basin in Iran. We first apply a typical neural network and obtain the root-mean-square-error of and the correlation coefficient of . Then, to improve the prediction ability of ANNs, we hybridize this method with cuckoo optimization algorithm (COA). Combination of ANNs with COA causes reduction in root-mean-square-error to , increasing in correlation coefficient to and also proposing a better model.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15715124.2017.1315815</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8257-0116</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1571-5124
ispartof International journal of river basin management, 2017-10, Vol.15 (4), p.453-460
issn 1571-5124
1814-2060
language eng
recordid cdi_proquest_journals_1961409342
source Taylor & Francis Journals Complete
subjects artificial neural network
Artificial neural networks
Correlation coefficient
Correlation coefficients
cuckoo optimization algorithm
discharge
Fluvial sediments
Forecasting
Hydrology
Learning algorithms
Machine learning
Mathematical models
Methods
Neural networks
River forecasting
Rivers
Sediment
Sediment discharge
Sediments
Suspended sediments
title A hybrid method for forecasting river-suspended sediments in Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20method%20for%20forecasting%20river-suspended%20sediments%20in%20Iran&rft.jtitle=International%20journal%20of%20river%20basin%20management&rft.au=Tavakoli%20Targhi,%20Alireza&rft.date=2017-10-02&rft.volume=15&rft.issue=4&rft.spage=453&rft.epage=460&rft.pages=453-460&rft.issn=1571-5124&rft.eissn=1814-2060&rft_id=info:doi/10.1080/15715124.2017.1315815&rft_dat=%3Cproquest_infor%3E1961409342%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961409342&rft_id=info:pmid/&rfr_iscdi=true