Robust mean-squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw

The method of Elbers, Lanjouw and Lanjouw (ELL) is the small area estimation method developed by the World Bank for poverty mapping and is widely used in developing countries. However, it has been criticized because of its assumption of negligible between-area variability when used to calculate smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2017-10, Vol.180 (4), p.1137-1161
Hauptverfasser: Das, Sumonkanti, Chambers, Ray
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1161
container_issue 4
container_start_page 1137
container_title Journal of the Royal Statistical Society. Series A, Statistics in society
container_volume 180
creator Das, Sumonkanti
Chambers, Ray
description The method of Elbers, Lanjouw and Lanjouw (ELL) is the small area estimation method developed by the World Bank for poverty mapping and is widely used in developing countries. However, it has been criticized because of its assumption of negligible between-area variability when used to calculate small area poverty estimates. In particular, the mean-squared errors (MSEs) of these estimates are significantly underestimated when this between-area variability cannot be adequately explained by the model covariates. A method of MSE estimation for ELL-type estimates is proposed which is robust to significant unexplained between-area variability. Simulation results show that the method proposed performs better than standard ELL MSE estimators when the area homogeneity assumption is violated. An application to a Bangladesh poverty mapping study provides some empirical evidence for this robustness.
doi_str_mv 10.1111/rssa.12311
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1961333429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44682667</jstor_id><sourcerecordid>44682667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3921-59e28003640396c1ccfcc369149987ee8f37c63d1dff19eba0e047ef4b11eef23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsX70LAm7g1s0mzm2OR-gEFoVXwtmSzE9rSbtpk19J_b-paj84lmeR55-Ml5BrYAGI8-BD0AFIOcEJ6IGSWqHz4eUp6TEmRgFL5ObkIYckOkWU9sp66sg0NXaOuk7BttceKovfOUwzNYq2bhaupjenGfaFv9sdnDLTUIcLxu5ljLNDMXcwsHa9K9OGeTnS9dO2O6ro63i_JmdWrgFe_Z598PI3fH1-Sydvz6-NokhiuUkiGCtOcMS4F40oaMMYaw6UCERfIEHPLMyN5BZW1oLDUDJnI0IoSANGmvE9uu7ob77ZtnLiI3X0dWxagJHDORaoidddRxrsQPNpi4-Nqfl8AKw52Fgc7ix87IwwdvFuscP8PWUxns9FRc9NplqFx_k8jhMxTKTP-DeNAgsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961333429</pqid></control><display><type>article</type><title>Robust mean-squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Das, Sumonkanti ; Chambers, Ray</creator><creatorcontrib>Das, Sumonkanti ; Chambers, Ray</creatorcontrib><description>The method of Elbers, Lanjouw and Lanjouw (ELL) is the small area estimation method developed by the World Bank for poverty mapping and is widely used in developing countries. However, it has been criticized because of its assumption of negligible between-area variability when used to calculate small area poverty estimates. In particular, the mean-squared errors (MSEs) of these estimates are significantly underestimated when this between-area variability cannot be adequately explained by the model covariates. A method of MSE estimation for ELL-type estimates is proposed which is robust to significant unexplained between-area variability. Simulation results show that the method proposed performs better than standard ELL MSE estimators when the area homogeneity assumption is violated. An application to a Bangladesh poverty mapping study provides some empirical evidence for this robustness.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/rssa.12311</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons Ltd</publisher><subject>Computer simulation ; Developing countries ; Estimates ; LDCs ; Mapping ; Model misspecification ; Poverty ; Poverty mapping ; Robustness ; Simulation ; Small area estimation ; Statistical analysis ; Variability ; World Bank method</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2017-10, Vol.180 (4), p.1137-1161</ispartof><rights>Copyright © 2017 The Royal Statistical Society and John Wiley &amp; Sons Ltd.</rights><rights>2017 Royal Statistical Society</rights><rights>Copyright © 2017 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3921-59e28003640396c1ccfcc369149987ee8f37c63d1dff19eba0e047ef4b11eef23</citedby><cites>FETCH-LOGICAL-c3921-59e28003640396c1ccfcc369149987ee8f37c63d1dff19eba0e047ef4b11eef23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44682667$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44682667$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,1412,27905,27906,45555,45556,57998,58231</link.rule.ids></links><search><creatorcontrib>Das, Sumonkanti</creatorcontrib><creatorcontrib>Chambers, Ray</creatorcontrib><title>Robust mean-squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>The method of Elbers, Lanjouw and Lanjouw (ELL) is the small area estimation method developed by the World Bank for poverty mapping and is widely used in developing countries. However, it has been criticized because of its assumption of negligible between-area variability when used to calculate small area poverty estimates. In particular, the mean-squared errors (MSEs) of these estimates are significantly underestimated when this between-area variability cannot be adequately explained by the model covariates. A method of MSE estimation for ELL-type estimates is proposed which is robust to significant unexplained between-area variability. Simulation results show that the method proposed performs better than standard ELL MSE estimators when the area homogeneity assumption is violated. An application to a Bangladesh poverty mapping study provides some empirical evidence for this robustness.</description><subject>Computer simulation</subject><subject>Developing countries</subject><subject>Estimates</subject><subject>LDCs</subject><subject>Mapping</subject><subject>Model misspecification</subject><subject>Poverty</subject><subject>Poverty mapping</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Small area estimation</subject><subject>Statistical analysis</subject><subject>Variability</subject><subject>World Bank method</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsX70LAm7g1s0mzm2OR-gEFoVXwtmSzE9rSbtpk19J_b-paj84lmeR55-Ml5BrYAGI8-BD0AFIOcEJ6IGSWqHz4eUp6TEmRgFL5ObkIYckOkWU9sp66sg0NXaOuk7BttceKovfOUwzNYq2bhaupjenGfaFv9sdnDLTUIcLxu5ljLNDMXcwsHa9K9OGeTnS9dO2O6ro63i_JmdWrgFe_Z598PI3fH1-Sydvz6-NokhiuUkiGCtOcMS4F40oaMMYaw6UCERfIEHPLMyN5BZW1oLDUDJnI0IoSANGmvE9uu7ob77ZtnLiI3X0dWxagJHDORaoidddRxrsQPNpi4-Nqfl8AKw52Fgc7ix87IwwdvFuscP8PWUxns9FRc9NplqFx_k8jhMxTKTP-DeNAgsA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Das, Sumonkanti</creator><creator>Chambers, Ray</creator><general>John Wiley &amp; Sons Ltd</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171001</creationdate><title>Robust mean-squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw</title><author>Das, Sumonkanti ; Chambers, Ray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3921-59e28003640396c1ccfcc369149987ee8f37c63d1dff19eba0e047ef4b11eef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Developing countries</topic><topic>Estimates</topic><topic>LDCs</topic><topic>Mapping</topic><topic>Model misspecification</topic><topic>Poverty</topic><topic>Poverty mapping</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Small area estimation</topic><topic>Statistical analysis</topic><topic>Variability</topic><topic>World Bank method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Sumonkanti</creatorcontrib><creatorcontrib>Chambers, Ray</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Sumonkanti</au><au>Chambers, Ray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust mean-squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>180</volume><issue>4</issue><spage>1137</spage><epage>1161</epage><pages>1137-1161</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>The method of Elbers, Lanjouw and Lanjouw (ELL) is the small area estimation method developed by the World Bank for poverty mapping and is widely used in developing countries. However, it has been criticized because of its assumption of negligible between-area variability when used to calculate small area poverty estimates. In particular, the mean-squared errors (MSEs) of these estimates are significantly underestimated when this between-area variability cannot be adequately explained by the model covariates. A method of MSE estimation for ELL-type estimates is proposed which is robust to significant unexplained between-area variability. Simulation results show that the method proposed performs better than standard ELL MSE estimators when the area homogeneity assumption is violated. An application to a Bangladesh poverty mapping study provides some empirical evidence for this robustness.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons Ltd</pub><doi>10.1111/rssa.12311</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-1998
ispartof Journal of the Royal Statistical Society. Series A, Statistics in society, 2017-10, Vol.180 (4), p.1137-1161
issn 0964-1998
1467-985X
language eng
recordid cdi_proquest_journals_1961333429
source Wiley Online Library Journals Frontfile Complete; Business Source Complete; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Computer simulation
Developing countries
Estimates
LDCs
Mapping
Model misspecification
Poverty
Poverty mapping
Robustness
Simulation
Small area estimation
Statistical analysis
Variability
World Bank method
title Robust mean-squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20mean-squared%20error%20estimation%20for%20poverty%20estimates%20based%20on%20the%20method%20of%20Elbers,%20Lanjouw%20and%20Lanjouw&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Das,%20Sumonkanti&rft.date=2017-10-01&rft.volume=180&rft.issue=4&rft.spage=1137&rft.epage=1161&rft.pages=1137-1161&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/rssa.12311&rft_dat=%3Cjstor_proqu%3E44682667%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961333429&rft_id=info:pmid/&rft_jstor_id=44682667&rfr_iscdi=true