Kinetic Study of the Acid Post-hydrolysis of Xylooligosaccharides from Hydrothermal Pretreatment

Hydrothermal pretreatment of sugarcane bagasse is a water-based and environment-friendly process that results in almost complete hemicellulose solubilization in oligomeric form as xylooligossacharides (XOs). However, the soluble XOs cannot be utilized by microorganisms such as yeasts, and therefore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioenergy research 2017-12, Vol.10 (4), p.1045-1056
Hauptverfasser: Nakasu, P. Y. S., Chagas, M. F., Costa, A. C., Rabelo, S. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1056
container_issue 4
container_start_page 1045
container_title Bioenergy research
container_volume 10
creator Nakasu, P. Y. S.
Chagas, M. F.
Costa, A. C.
Rabelo, S. C.
description Hydrothermal pretreatment of sugarcane bagasse is a water-based and environment-friendly process that results in almost complete hemicellulose solubilization in oligomeric form as xylooligossacharides (XOs). However, the soluble XOs cannot be utilized by microorganisms such as yeasts, and therefore, a further break down is necessary to generate pentose (C5) monomers that can be then biotransformed into ethanol or other metabolites. The kinetics of XOs post-hydrolysis with sulfuric, maleic, and oxalic acids (the latter two being dicarboxylic acids) in a sugarcane bagasse hemicellulosic hydrolysate was assessed in a bench-scale reactor (2 L). By means of a 2 2 full factorial design with center point triplicate, acid mass loading and temperature were varied from 0.5 and 2.0% and from 120 to 150 °C, respectively. An irreversible first-order consecutive reaction model of the hydrolysis of XOs in liquid medium was employed. Based on an Arrhenius-type equation, a kinetic parameter estimation was performed with genetic algorithms and the Runge-Kutta methods. For the three acids, the calculated exponential factors, A 0 n ( n  = 1, 2, and 3), ranged from 10 12 to 10 15  min −1 ; the dimensionless parameters, m n ( n  = 1, 2, and 3), ranged from 0.86 to 1.97; and the activation energies ranged from 89 to 129.8 kJ·mol −1 . The model—developed at microscale—correctly described the observed XOs, C5, and furfural post-hydrolysis profiles in bench scale and proved the dicarboxylic acids were more selective towards post-hydrolysis by having slower kinetics than sulfuric acid.
doi_str_mv 10.1007/s12155-017-9864-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1960505789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712240295</galeid><sourcerecordid>A712240295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4ac618e629e03d1823f3030ec6d5e764527758665555db562ed5d056f20f86a93</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoso-PkDvBU8VydJk7bHRfxCQUEFbzEmk91I22iSPfTfm2VFVtDMIWHyPJPAWxTHBE4JQHMWCSWcV0CaqmtFXZGtYo90rKsIren2z5nVu8V-jO8AAmro9orXWzdicrp8TEszld6WaYHlTDtTPviYqsVkgu-n6OLq7mXqve_d3Eel9UIFZzCWNvihvF5xWQ2D6suHgCmgSgOO6bDYsaqPePS9HxTPlxdP59fV3f3VzfnsrtKsZamqlRakRUE7BGZIS5llwAC1MBwbUXPaNLwVgudl3rigaLgBLiwF2wrVsYPiZD33I_jPJcYk3_0yjPlJSToBHHjTblBz1aN0o_UpKD24qOWsIZTWQDueqdM_qFwGB6f9iNbl_i-BrAUdfIwBrfwIblBhkgTkKh-5zkfmfOQqH0myQ9dOzOw4x7Dx4X-lL8DSkS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960505789</pqid></control><display><type>article</type><title>Kinetic Study of the Acid Post-hydrolysis of Xylooligosaccharides from Hydrothermal Pretreatment</title><source>SpringerLink Journals</source><creator>Nakasu, P. Y. S. ; Chagas, M. F. ; Costa, A. C. ; Rabelo, S. C.</creator><creatorcontrib>Nakasu, P. Y. S. ; Chagas, M. F. ; Costa, A. C. ; Rabelo, S. C.</creatorcontrib><description>Hydrothermal pretreatment of sugarcane bagasse is a water-based and environment-friendly process that results in almost complete hemicellulose solubilization in oligomeric form as xylooligossacharides (XOs). However, the soluble XOs cannot be utilized by microorganisms such as yeasts, and therefore, a further break down is necessary to generate pentose (C5) monomers that can be then biotransformed into ethanol or other metabolites. The kinetics of XOs post-hydrolysis with sulfuric, maleic, and oxalic acids (the latter two being dicarboxylic acids) in a sugarcane bagasse hemicellulosic hydrolysate was assessed in a bench-scale reactor (2 L). By means of a 2 2 full factorial design with center point triplicate, acid mass loading and temperature were varied from 0.5 and 2.0% and from 120 to 150 °C, respectively. An irreversible first-order consecutive reaction model of the hydrolysis of XOs in liquid medium was employed. Based on an Arrhenius-type equation, a kinetic parameter estimation was performed with genetic algorithms and the Runge-Kutta methods. For the three acids, the calculated exponential factors, A 0 n ( n  = 1, 2, and 3), ranged from 10 12 to 10 15  min −1 ; the dimensionless parameters, m n ( n  = 1, 2, and 3), ranged from 0.86 to 1.97; and the activation energies ranged from 89 to 129.8 kJ·mol −1 . The model—developed at microscale—correctly described the observed XOs, C5, and furfural post-hydrolysis profiles in bench scale and proved the dicarboxylic acids were more selective towards post-hydrolysis by having slower kinetics than sulfuric acid.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-017-9864-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Analysis ; Bagasse ; Biomedical and Life Sciences ; Breaking down ; Dicarboxylic acids ; Ethanol ; Factorial design ; Furfural ; Genetic algorithms ; Hemicellulose ; Hydrolysis ; Hydrothermal pretreatment ; Kinetics ; Life Sciences ; Metabolites ; Microorganisms ; Monomers ; Monosaccharides ; Oxalic acid ; Parameter estimation ; Pentose ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Reaction kinetics ; Runge-Kutta method ; Solubilization ; Sugarcane ; Sugars ; Sulfur ; Sulfuric acid ; Wood Science &amp; Technology ; Yeasts</subject><ispartof>Bioenergy research, 2017-12, Vol.10 (4), p.1045-1056</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Bioenergy Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4ac618e629e03d1823f3030ec6d5e764527758665555db562ed5d056f20f86a93</citedby><cites>FETCH-LOGICAL-c383t-4ac618e629e03d1823f3030ec6d5e764527758665555db562ed5d056f20f86a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12155-017-9864-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12155-017-9864-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nakasu, P. Y. S.</creatorcontrib><creatorcontrib>Chagas, M. F.</creatorcontrib><creatorcontrib>Costa, A. C.</creatorcontrib><creatorcontrib>Rabelo, S. C.</creatorcontrib><title>Kinetic Study of the Acid Post-hydrolysis of Xylooligosaccharides from Hydrothermal Pretreatment</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>Hydrothermal pretreatment of sugarcane bagasse is a water-based and environment-friendly process that results in almost complete hemicellulose solubilization in oligomeric form as xylooligossacharides (XOs). However, the soluble XOs cannot be utilized by microorganisms such as yeasts, and therefore, a further break down is necessary to generate pentose (C5) monomers that can be then biotransformed into ethanol or other metabolites. The kinetics of XOs post-hydrolysis with sulfuric, maleic, and oxalic acids (the latter two being dicarboxylic acids) in a sugarcane bagasse hemicellulosic hydrolysate was assessed in a bench-scale reactor (2 L). By means of a 2 2 full factorial design with center point triplicate, acid mass loading and temperature were varied from 0.5 and 2.0% and from 120 to 150 °C, respectively. An irreversible first-order consecutive reaction model of the hydrolysis of XOs in liquid medium was employed. Based on an Arrhenius-type equation, a kinetic parameter estimation was performed with genetic algorithms and the Runge-Kutta methods. For the three acids, the calculated exponential factors, A 0 n ( n  = 1, 2, and 3), ranged from 10 12 to 10 15  min −1 ; the dimensionless parameters, m n ( n  = 1, 2, and 3), ranged from 0.86 to 1.97; and the activation energies ranged from 89 to 129.8 kJ·mol −1 . The model—developed at microscale—correctly described the observed XOs, C5, and furfural post-hydrolysis profiles in bench scale and proved the dicarboxylic acids were more selective towards post-hydrolysis by having slower kinetics than sulfuric acid.</description><subject>Acids</subject><subject>Analysis</subject><subject>Bagasse</subject><subject>Biomedical and Life Sciences</subject><subject>Breaking down</subject><subject>Dicarboxylic acids</subject><subject>Ethanol</subject><subject>Factorial design</subject><subject>Furfural</subject><subject>Genetic algorithms</subject><subject>Hemicellulose</subject><subject>Hydrolysis</subject><subject>Hydrothermal pretreatment</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Monomers</subject><subject>Monosaccharides</subject><subject>Oxalic acid</subject><subject>Parameter estimation</subject><subject>Pentose</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Reaction kinetics</subject><subject>Runge-Kutta method</subject><subject>Solubilization</subject><subject>Sugarcane</subject><subject>Sugars</subject><subject>Sulfur</subject><subject>Sulfuric acid</subject><subject>Wood Science &amp; Technology</subject><subject>Yeasts</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1LxDAQhoso-PkDvBU8VydJk7bHRfxCQUEFbzEmk91I22iSPfTfm2VFVtDMIWHyPJPAWxTHBE4JQHMWCSWcV0CaqmtFXZGtYo90rKsIren2z5nVu8V-jO8AAmro9orXWzdicrp8TEszld6WaYHlTDtTPviYqsVkgu-n6OLq7mXqve_d3Eel9UIFZzCWNvihvF5xWQ2D6suHgCmgSgOO6bDYsaqPePS9HxTPlxdP59fV3f3VzfnsrtKsZamqlRakRUE7BGZIS5llwAC1MBwbUXPaNLwVgudl3rigaLgBLiwF2wrVsYPiZD33I_jPJcYk3_0yjPlJSToBHHjTblBz1aN0o_UpKD24qOWsIZTWQDueqdM_qFwGB6f9iNbl_i-BrAUdfIwBrfwIblBhkgTkKh-5zkfmfOQqH0myQ9dOzOw4x7Dx4X-lL8DSkS4</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Nakasu, P. Y. S.</creator><creator>Chagas, M. F.</creator><creator>Costa, A. C.</creator><creator>Rabelo, S. C.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20171201</creationdate><title>Kinetic Study of the Acid Post-hydrolysis of Xylooligosaccharides from Hydrothermal Pretreatment</title><author>Nakasu, P. Y. S. ; Chagas, M. F. ; Costa, A. C. ; Rabelo, S. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4ac618e629e03d1823f3030ec6d5e764527758665555db562ed5d056f20f86a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Bagasse</topic><topic>Biomedical and Life Sciences</topic><topic>Breaking down</topic><topic>Dicarboxylic acids</topic><topic>Ethanol</topic><topic>Factorial design</topic><topic>Furfural</topic><topic>Genetic algorithms</topic><topic>Hemicellulose</topic><topic>Hydrolysis</topic><topic>Hydrothermal pretreatment</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Monomers</topic><topic>Monosaccharides</topic><topic>Oxalic acid</topic><topic>Parameter estimation</topic><topic>Pentose</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Reaction kinetics</topic><topic>Runge-Kutta method</topic><topic>Solubilization</topic><topic>Sugarcane</topic><topic>Sugars</topic><topic>Sulfur</topic><topic>Sulfuric acid</topic><topic>Wood Science &amp; Technology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakasu, P. Y. S.</creatorcontrib><creatorcontrib>Chagas, M. F.</creatorcontrib><creatorcontrib>Costa, A. C.</creatorcontrib><creatorcontrib>Rabelo, S. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakasu, P. Y. S.</au><au>Chagas, M. F.</au><au>Costa, A. C.</au><au>Rabelo, S. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Study of the Acid Post-hydrolysis of Xylooligosaccharides from Hydrothermal Pretreatment</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>10</volume><issue>4</issue><spage>1045</spage><epage>1056</epage><pages>1045-1056</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>Hydrothermal pretreatment of sugarcane bagasse is a water-based and environment-friendly process that results in almost complete hemicellulose solubilization in oligomeric form as xylooligossacharides (XOs). However, the soluble XOs cannot be utilized by microorganisms such as yeasts, and therefore, a further break down is necessary to generate pentose (C5) monomers that can be then biotransformed into ethanol or other metabolites. The kinetics of XOs post-hydrolysis with sulfuric, maleic, and oxalic acids (the latter two being dicarboxylic acids) in a sugarcane bagasse hemicellulosic hydrolysate was assessed in a bench-scale reactor (2 L). By means of a 2 2 full factorial design with center point triplicate, acid mass loading and temperature were varied from 0.5 and 2.0% and from 120 to 150 °C, respectively. An irreversible first-order consecutive reaction model of the hydrolysis of XOs in liquid medium was employed. Based on an Arrhenius-type equation, a kinetic parameter estimation was performed with genetic algorithms and the Runge-Kutta methods. For the three acids, the calculated exponential factors, A 0 n ( n  = 1, 2, and 3), ranged from 10 12 to 10 15  min −1 ; the dimensionless parameters, m n ( n  = 1, 2, and 3), ranged from 0.86 to 1.97; and the activation energies ranged from 89 to 129.8 kJ·mol −1 . The model—developed at microscale—correctly described the observed XOs, C5, and furfural post-hydrolysis profiles in bench scale and proved the dicarboxylic acids were more selective towards post-hydrolysis by having slower kinetics than sulfuric acid.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12155-017-9864-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-1234
ispartof Bioenergy research, 2017-12, Vol.10 (4), p.1045-1056
issn 1939-1234
1939-1242
language eng
recordid cdi_proquest_journals_1960505789
source SpringerLink Journals
subjects Acids
Analysis
Bagasse
Biomedical and Life Sciences
Breaking down
Dicarboxylic acids
Ethanol
Factorial design
Furfural
Genetic algorithms
Hemicellulose
Hydrolysis
Hydrothermal pretreatment
Kinetics
Life Sciences
Metabolites
Microorganisms
Monomers
Monosaccharides
Oxalic acid
Parameter estimation
Pentose
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant Sciences
Reaction kinetics
Runge-Kutta method
Solubilization
Sugarcane
Sugars
Sulfur
Sulfuric acid
Wood Science & Technology
Yeasts
title Kinetic Study of the Acid Post-hydrolysis of Xylooligosaccharides from Hydrothermal Pretreatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Study%20of%20the%20Acid%20Post-hydrolysis%20of%20Xylooligosaccharides%20from%20Hydrothermal%20Pretreatment&rft.jtitle=Bioenergy%20research&rft.au=Nakasu,%20P.%20Y.%20S.&rft.date=2017-12-01&rft.volume=10&rft.issue=4&rft.spage=1045&rft.epage=1056&rft.pages=1045-1056&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-017-9864-1&rft_dat=%3Cgale_proqu%3EA712240295%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1960505789&rft_id=info:pmid/&rft_galeid=A712240295&rfr_iscdi=true