Monte Carlo simulation of a TEPC for microdosimetry of carbon ions
The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this c...
Gespeichert in:
Veröffentlicht in: | Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2017-11, Vol.140, p.412-418 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | |
container_start_page | 412 |
container_title | Radiation physics and chemistry (Oxford, England : 1993) |
container_volume | 140 |
creator | Galer, S. Shipley, D.R. Palmans, H. Kirkby, K.J. Nisbet, A. |
description | The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used.
•Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness. |
doi_str_mv | 10.1016/j.radphyschem.2017.02.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1960496206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969806X17301792</els_id><sourcerecordid>1960496206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</originalsourceid><addsrcrecordid>eNqNUE1LxDAQDaLguvofKp5bJ8k2TY5a_IIVPazgLaTplE3ZNmvSFfbfm2U9eBQezOF9zMwj5JpCQYGK274Ipt2u99GucSgY0KoAliBPyIzKSuUgVXlKZqCEyiWIz3NyEWMPAJUs-Yzcv_pxwqw2YeOz6IbdxkzOj5nvMpOtHt7rrPMhG5wNvvWJxynsD6Q1oUmyJI2X5Kwzm4hXv3NOPh4fVvVzvnx7eqnvlrnlCzXlnLHWcMY71WLFVQslE5UxkhlaWtGIRuGCMaGMENg0sgFGG6s4NoDMSuz4nNwcc7fBf-0wTrr3uzCmlZoqAQslGIikUkdVujjGgJ3eBjeYsNcU9KEy3es_lelDZRpYgkze-ujF9Ma3w6CjdThabF1AO-nWu3-k_ABoZXq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960496206</pqid></control><display><type>article</type><title>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Galer, S. ; Shipley, D.R. ; Palmans, H. ; Kirkby, K.J. ; Nisbet, A.</creator><creatorcontrib>Galer, S. ; Shipley, D.R. ; Palmans, H. ; Kirkby, K.J. ; Nisbet, A.</creatorcontrib><description>The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used.
•Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness.</description><identifier>ISSN: 0969-806X</identifier><identifier>EISSN: 1879-0895</identifier><identifier>DOI: 10.1016/j.radphyschem.2017.02.028</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological effects ; Carbon ; Computer simulation ; Dosimetry ; Energy spectra ; Ion beams ; Mathematical analysis ; Microdosimeters ; Microdosimetry ; Monte Carlo ; Monte Carlo simulation ; Perspex ; Polymethyl methacrylate ; Protons ; Relative biological effectiveness (RBE) ; Studies ; TEPC</subject><ispartof>Radiation physics and chemistry (Oxford, England : 1993), 2017-11, Vol.140, p.412-418</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</citedby><cites>FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969806X17301792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Galer, S.</creatorcontrib><creatorcontrib>Shipley, D.R.</creatorcontrib><creatorcontrib>Palmans, H.</creatorcontrib><creatorcontrib>Kirkby, K.J.</creatorcontrib><creatorcontrib>Nisbet, A.</creatorcontrib><title>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</title><title>Radiation physics and chemistry (Oxford, England : 1993)</title><description>The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used.
•Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness.</description><subject>Biological effects</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Dosimetry</subject><subject>Energy spectra</subject><subject>Ion beams</subject><subject>Mathematical analysis</subject><subject>Microdosimeters</subject><subject>Microdosimetry</subject><subject>Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>Perspex</subject><subject>Polymethyl methacrylate</subject><subject>Protons</subject><subject>Relative biological effectiveness (RBE)</subject><subject>Studies</subject><subject>TEPC</subject><issn>0969-806X</issn><issn>1879-0895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAQDaLguvofKp5bJ8k2TY5a_IIVPazgLaTplE3ZNmvSFfbfm2U9eBQezOF9zMwj5JpCQYGK274Ipt2u99GucSgY0KoAliBPyIzKSuUgVXlKZqCEyiWIz3NyEWMPAJUs-Yzcv_pxwqw2YeOz6IbdxkzOj5nvMpOtHt7rrPMhG5wNvvWJxynsD6Q1oUmyJI2X5Kwzm4hXv3NOPh4fVvVzvnx7eqnvlrnlCzXlnLHWcMY71WLFVQslE5UxkhlaWtGIRuGCMaGMENg0sgFGG6s4NoDMSuz4nNwcc7fBf-0wTrr3uzCmlZoqAQslGIikUkdVujjGgJ3eBjeYsNcU9KEy3es_lelDZRpYgkze-ujF9Ma3w6CjdThabF1AO-nWu3-k_ABoZXq3</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Galer, S.</creator><creator>Shipley, D.R.</creator><creator>Palmans, H.</creator><creator>Kirkby, K.J.</creator><creator>Nisbet, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201711</creationdate><title>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</title><author>Galer, S. ; Shipley, D.R. ; Palmans, H. ; Kirkby, K.J. ; Nisbet, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological effects</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Dosimetry</topic><topic>Energy spectra</topic><topic>Ion beams</topic><topic>Mathematical analysis</topic><topic>Microdosimeters</topic><topic>Microdosimetry</topic><topic>Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>Perspex</topic><topic>Polymethyl methacrylate</topic><topic>Protons</topic><topic>Relative biological effectiveness (RBE)</topic><topic>Studies</topic><topic>TEPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galer, S.</creatorcontrib><creatorcontrib>Shipley, D.R.</creatorcontrib><creatorcontrib>Palmans, H.</creatorcontrib><creatorcontrib>Kirkby, K.J.</creatorcontrib><creatorcontrib>Nisbet, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiation physics and chemistry (Oxford, England : 1993)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galer, S.</au><au>Shipley, D.R.</au><au>Palmans, H.</au><au>Kirkby, K.J.</au><au>Nisbet, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</atitle><jtitle>Radiation physics and chemistry (Oxford, England : 1993)</jtitle><date>2017-11</date><risdate>2017</risdate><volume>140</volume><spage>412</spage><epage>418</epage><pages>412-418</pages><issn>0969-806X</issn><eissn>1879-0895</eissn><abstract>The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used.
•Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.radphyschem.2017.02.028</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-806X |
ispartof | Radiation physics and chemistry (Oxford, England : 1993), 2017-11, Vol.140, p.412-418 |
issn | 0969-806X 1879-0895 |
language | eng |
recordid | cdi_proquest_journals_1960496206 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Biological effects Carbon Computer simulation Dosimetry Energy spectra Ion beams Mathematical analysis Microdosimeters Microdosimetry Monte Carlo Monte Carlo simulation Perspex Polymethyl methacrylate Protons Relative biological effectiveness (RBE) Studies TEPC |
title | Monte Carlo simulation of a TEPC for microdosimetry of carbon ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20a%20TEPC%20for%20microdosimetry%20of%20carbon%20ions&rft.jtitle=Radiation%20physics%20and%20chemistry%20(Oxford,%20England%20:%201993)&rft.au=Galer,%20S.&rft.date=2017-11&rft.volume=140&rft.spage=412&rft.epage=418&rft.pages=412-418&rft.issn=0969-806X&rft.eissn=1879-0895&rft_id=info:doi/10.1016/j.radphyschem.2017.02.028&rft_dat=%3Cproquest_cross%3E1960496206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1960496206&rft_id=info:pmid/&rft_els_id=S0969806X17301792&rfr_iscdi=true |