Monte Carlo simulation of a TEPC for microdosimetry of carbon ions

The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2017-11, Vol.140, p.412-418
Hauptverfasser: Galer, S., Shipley, D.R., Palmans, H., Kirkby, K.J., Nisbet, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue
container_start_page 412
container_title Radiation physics and chemistry (Oxford, England : 1993)
container_volume 140
creator Galer, S.
Shipley, D.R.
Palmans, H.
Kirkby, K.J.
Nisbet, A.
description The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used. •Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness.
doi_str_mv 10.1016/j.radphyschem.2017.02.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1960496206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969806X17301792</els_id><sourcerecordid>1960496206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</originalsourceid><addsrcrecordid>eNqNUE1LxDAQDaLguvofKp5bJ8k2TY5a_IIVPazgLaTplE3ZNmvSFfbfm2U9eBQezOF9zMwj5JpCQYGK274Ipt2u99GucSgY0KoAliBPyIzKSuUgVXlKZqCEyiWIz3NyEWMPAJUs-Yzcv_pxwqw2YeOz6IbdxkzOj5nvMpOtHt7rrPMhG5wNvvWJxynsD6Q1oUmyJI2X5Kwzm4hXv3NOPh4fVvVzvnx7eqnvlrnlCzXlnLHWcMY71WLFVQslE5UxkhlaWtGIRuGCMaGMENg0sgFGG6s4NoDMSuz4nNwcc7fBf-0wTrr3uzCmlZoqAQslGIikUkdVujjGgJ3eBjeYsNcU9KEy3es_lelDZRpYgkze-ujF9Ma3w6CjdThabF1AO-nWu3-k_ABoZXq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960496206</pqid></control><display><type>article</type><title>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Galer, S. ; Shipley, D.R. ; Palmans, H. ; Kirkby, K.J. ; Nisbet, A.</creator><creatorcontrib>Galer, S. ; Shipley, D.R. ; Palmans, H. ; Kirkby, K.J. ; Nisbet, A.</creatorcontrib><description>The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used. •Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness.</description><identifier>ISSN: 0969-806X</identifier><identifier>EISSN: 1879-0895</identifier><identifier>DOI: 10.1016/j.radphyschem.2017.02.028</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological effects ; Carbon ; Computer simulation ; Dosimetry ; Energy spectra ; Ion beams ; Mathematical analysis ; Microdosimeters ; Microdosimetry ; Monte Carlo ; Monte Carlo simulation ; Perspex ; Polymethyl methacrylate ; Protons ; Relative biological effectiveness (RBE) ; Studies ; TEPC</subject><ispartof>Radiation physics and chemistry (Oxford, England : 1993), 2017-11, Vol.140, p.412-418</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</citedby><cites>FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969806X17301792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Galer, S.</creatorcontrib><creatorcontrib>Shipley, D.R.</creatorcontrib><creatorcontrib>Palmans, H.</creatorcontrib><creatorcontrib>Kirkby, K.J.</creatorcontrib><creatorcontrib>Nisbet, A.</creatorcontrib><title>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</title><title>Radiation physics and chemistry (Oxford, England : 1993)</title><description>The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used. •Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness.</description><subject>Biological effects</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Dosimetry</subject><subject>Energy spectra</subject><subject>Ion beams</subject><subject>Mathematical analysis</subject><subject>Microdosimeters</subject><subject>Microdosimetry</subject><subject>Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>Perspex</subject><subject>Polymethyl methacrylate</subject><subject>Protons</subject><subject>Relative biological effectiveness (RBE)</subject><subject>Studies</subject><subject>TEPC</subject><issn>0969-806X</issn><issn>1879-0895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAQDaLguvofKp5bJ8k2TY5a_IIVPazgLaTplE3ZNmvSFfbfm2U9eBQezOF9zMwj5JpCQYGK274Ipt2u99GucSgY0KoAliBPyIzKSuUgVXlKZqCEyiWIz3NyEWMPAJUs-Yzcv_pxwqw2YeOz6IbdxkzOj5nvMpOtHt7rrPMhG5wNvvWJxynsD6Q1oUmyJI2X5Kwzm4hXv3NOPh4fVvVzvnx7eqnvlrnlCzXlnLHWcMY71WLFVQslE5UxkhlaWtGIRuGCMaGMENg0sgFGG6s4NoDMSuz4nNwcc7fBf-0wTrr3uzCmlZoqAQslGIikUkdVujjGgJ3eBjeYsNcU9KEy3es_lelDZRpYgkze-ujF9Ma3w6CjdThabF1AO-nWu3-k_ABoZXq3</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Galer, S.</creator><creator>Shipley, D.R.</creator><creator>Palmans, H.</creator><creator>Kirkby, K.J.</creator><creator>Nisbet, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201711</creationdate><title>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</title><author>Galer, S. ; Shipley, D.R. ; Palmans, H. ; Kirkby, K.J. ; Nisbet, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-322da323f9de739d05267aa82a15c6b6b9e42269a66ebb8b021bc93eb0e2c8ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological effects</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Dosimetry</topic><topic>Energy spectra</topic><topic>Ion beams</topic><topic>Mathematical analysis</topic><topic>Microdosimeters</topic><topic>Microdosimetry</topic><topic>Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>Perspex</topic><topic>Polymethyl methacrylate</topic><topic>Protons</topic><topic>Relative biological effectiveness (RBE)</topic><topic>Studies</topic><topic>TEPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galer, S.</creatorcontrib><creatorcontrib>Shipley, D.R.</creatorcontrib><creatorcontrib>Palmans, H.</creatorcontrib><creatorcontrib>Kirkby, K.J.</creatorcontrib><creatorcontrib>Nisbet, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiation physics and chemistry (Oxford, England : 1993)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galer, S.</au><au>Shipley, D.R.</au><au>Palmans, H.</au><au>Kirkby, K.J.</au><au>Nisbet, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of a TEPC for microdosimetry of carbon ions</atitle><jtitle>Radiation physics and chemistry (Oxford, England : 1993)</jtitle><date>2017-11</date><risdate>2017</risdate><volume>140</volume><spage>412</spage><epage>418</epage><pages>412-418</pages><issn>0969-806X</issn><eissn>1879-0895</eissn><abstract>The increase in the number of therapeutic proton and ion beam centres worldwide has prompted renewed interest in measuring and simulating microdosimetric spectra in order to help understand the complexity underlying the Relative Biological Effectiveness (RBE) of these treatment modalities. In this context we have studied the capability of the Geant4 toolkit to simulate microdosimetric spectra measured with a Tissue Equivalent Proportional Counter (TEPC) in a clinical carbon ion beam. The simulated spectra were compared with published experimental data obtained along the depth dose curve of a 194MeV/u carbon beam at the GSI, Darmstadt (Gerlach et al., 2002). The initial beam energy and energy spread employed in the simulation were tuned to match the calculated and measured depth dose distributions. A good agreement was found at all depths after a shift of 4.025mm was taken into account with agreement for the microdosimetric derived RBE values to within 0.4% and 11.9% for depths 40 and 66mm in PMMA (Perspex). This work demonstrates that the Geant4 toolkit can accurately reproduce experimental microdosimetric data and can thus be used for independent calculation of lineal energy spectra from which RBE estimates can be derived using the equation of Pihet et al. (1990). The work highlights the difficulty in using experimental work to benchmark Monte Carlo simulations and the need for detailed descriptions of experimental setups used. •Geant4 toolkit used to simulate microdosimetric spectra for carbon beams.•Validation against experimental results for a TEPC.•Convenient yet accurate means of estimating relative biological effectiveness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.radphyschem.2017.02.028</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-806X
ispartof Radiation physics and chemistry (Oxford, England : 1993), 2017-11, Vol.140, p.412-418
issn 0969-806X
1879-0895
language eng
recordid cdi_proquest_journals_1960496206
source Elsevier ScienceDirect Journals Complete
subjects Biological effects
Carbon
Computer simulation
Dosimetry
Energy spectra
Ion beams
Mathematical analysis
Microdosimeters
Microdosimetry
Monte Carlo
Monte Carlo simulation
Perspex
Polymethyl methacrylate
Protons
Relative biological effectiveness (RBE)
Studies
TEPC
title Monte Carlo simulation of a TEPC for microdosimetry of carbon ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20a%20TEPC%20for%20microdosimetry%20of%20carbon%20ions&rft.jtitle=Radiation%20physics%20and%20chemistry%20(Oxford,%20England%20:%201993)&rft.au=Galer,%20S.&rft.date=2017-11&rft.volume=140&rft.spage=412&rft.epage=418&rft.pages=412-418&rft.issn=0969-806X&rft.eissn=1879-0895&rft_id=info:doi/10.1016/j.radphyschem.2017.02.028&rft_dat=%3Cproquest_cross%3E1960496206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1960496206&rft_id=info:pmid/&rft_els_id=S0969806X17301792&rfr_iscdi=true