Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs
Serum composition is linked to metabolic diseases not only to understand their pathogenesis but also for diagnostic purposes. Quality and quantity of nutritional intake can affect disease risk and serum composition. It is then possible that diet derived serum components directly affect pathogenetic...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2015-09, Vol.230 (9), p.2059-2066 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2066 |
---|---|
container_issue | 9 |
container_start_page | 2059 |
container_title | Journal of cellular physiology |
container_volume | 230 |
creator | De Rosa, Maria Caterina Caputo, Mariella Zirpoli, Hylde Rescigno, Tania Tarallo, Roberta Giurato, Giorgio Weisz, Alessandro Torino, Gaetano Tecce, Mario Felice |
description | Serum composition is linked to metabolic diseases not only to understand their pathogenesis but also for diagnostic purposes. Quality and quantity of nutritional intake can affect disease risk and serum composition. It is then possible that diet derived serum components directly affect pathogenetic mechanisms. To identify involved factors, we evaluated the effect on gene expression of direct addition of dyslipidemic human serum samples to cultured human hepatoma cells (HepG2). Sera were selected on the basis of cholesterol level, considering this parameter as mostly linked to dietary intake. Cells were treated with 32 sera from hypercholesterolemic and normocholesterolemic subjects to identify differentially regulated mRNAs using DNA microarray analysis. We identified several mRNAs with the highest modulations in cells treated with dyslipidemic sera versus cells treated with normal sera. Since the two serum groups had variable polyunsaturated fatty acids (PUFAs) contents, selected mRNAs were further assessed for their regulation by docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA). Four genes resulted both affected by serum composition and PUFAs: 3‐hydroxy‐3‐methylglutaryl‐CoenzymeA synthase 2 (HMGCS2), glutathione S‐transferase alpha 1 (GSTA1), liver expressed antimicrobial peptide 2 (LEAP2) and apolipoprotein M (ApoM). HMGCS2 expression appears the most relevant and was also found modulated via transcription factors peroxysome proliferator activated receptor α (PPARα) and forkhead box O1 (FoxO1). Our data indicate that expression levels of the selected mRNAs, primarily of HMGCS2, could represent a reference of nutritional intake, PUFAs effects and dyslipidemic diseases pathogenesis. J. Cell. Physiol. 230: 2059–2066, 2015. © 2015 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jcp.24932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1960198758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3694973381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4192-9f150ee08bd9e1c378a37254d7c7b538dc8b0408496b525ba7db4bed981a75ea3</originalsourceid><addsrcrecordid>eNp9kc9PFTEQxxujkQd68B8wTTx5WGi37XZ7JA95oAQJQjg27XZW-9xftl1x_3urD7jpZeYwn_lMMl-E3lBySAkpj7bNdFhyxcpnaEWJkgWvRPkcrfKMFkpwuof2Y9wSQpRi7CXaK0XFVEn5CsVzB0PyrW9M8uOAxxZvYICIv0AHTfI_oVvwNXydO5PAYT_gs7k3ucJk0tgbvIaui9gu-CaASX2W4TufvuGTJXZ-8g5632RZMNgMDl_dnh7HV-hFa7oIrx_6Abo9_XCzPisuPm_O18cXRcOpKgvVUkEASG2dAtowWRsmS8GdbKQVrHZNbQknNVeVFaWwRjrLLThVUyMFGHaA3u28Uxh_zBCT3o5zGPJJTVVFqKqlqP9LVTXL_-RMZOr9jmrCGGOAVk_B9yYsmhL9JwSdQ9B_Q8js2wfjbHtwT-Tj1zNwtAPufQfLv0364_rqUVnsNnxM8Otpw4TvupJMCn13udHqEyWX12SjOfsNFdCeiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683109435</pqid></control><display><type>article</type><title>Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Rosa, Maria Caterina ; Caputo, Mariella ; Zirpoli, Hylde ; Rescigno, Tania ; Tarallo, Roberta ; Giurato, Giorgio ; Weisz, Alessandro ; Torino, Gaetano ; Tecce, Mario Felice</creator><creatorcontrib>De Rosa, Maria Caterina ; Caputo, Mariella ; Zirpoli, Hylde ; Rescigno, Tania ; Tarallo, Roberta ; Giurato, Giorgio ; Weisz, Alessandro ; Torino, Gaetano ; Tecce, Mario Felice</creatorcontrib><description>Serum composition is linked to metabolic diseases not only to understand their pathogenesis but also for diagnostic purposes. Quality and quantity of nutritional intake can affect disease risk and serum composition. It is then possible that diet derived serum components directly affect pathogenetic mechanisms. To identify involved factors, we evaluated the effect on gene expression of direct addition of dyslipidemic human serum samples to cultured human hepatoma cells (HepG2). Sera were selected on the basis of cholesterol level, considering this parameter as mostly linked to dietary intake. Cells were treated with 32 sera from hypercholesterolemic and normocholesterolemic subjects to identify differentially regulated mRNAs using DNA microarray analysis. We identified several mRNAs with the highest modulations in cells treated with dyslipidemic sera versus cells treated with normal sera. Since the two serum groups had variable polyunsaturated fatty acids (PUFAs) contents, selected mRNAs were further assessed for their regulation by docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA). Four genes resulted both affected by serum composition and PUFAs: 3‐hydroxy‐3‐methylglutaryl‐CoenzymeA synthase 2 (HMGCS2), glutathione S‐transferase alpha 1 (GSTA1), liver expressed antimicrobial peptide 2 (LEAP2) and apolipoprotein M (ApoM). HMGCS2 expression appears the most relevant and was also found modulated via transcription factors peroxysome proliferator activated receptor α (PPARα) and forkhead box O1 (FoxO1). Our data indicate that expression levels of the selected mRNAs, primarily of HMGCS2, could represent a reference of nutritional intake, PUFAs effects and dyslipidemic diseases pathogenesis. J. Cell. Physiol. 230: 2059–2066, 2015. © 2015 Wiley Periodicals, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.24932</identifier><identifier>PMID: 25639214</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Antimicrobial Cationic Peptides - biosynthesis ; Apolipoproteins ; Apolipoproteins - biosynthesis ; Apolipoproteins M ; Arachidonic acid ; Arachidonic Acid - administration & dosage ; Blood Proteins - biosynthesis ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - pathology ; Cholesterol ; Deoxyribonucleic acid ; Diagnostic systems ; Diet ; Dietary intake ; DNA ; DNA microarrays ; Docosahexaenoic acid ; Docosahexaenoic Acids - administration & dosage ; Dyslipidemias - blood ; Dyslipidemias - metabolism ; Eicosapentaenoic acid ; Eicosapentaenoic Acid - administration & dosage ; Fatty acids ; Fish oils ; Forkhead protein ; FOXO1 protein ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Genes ; Glutathione ; Glutathione transferase ; Glutathione Transferase - biosynthesis ; Health risks ; Hep G2 Cells ; Hepatoma ; Humans ; Hydroxymethylglutaryl-CoA Synthase - biosynthesis ; Lipocalins - biosynthesis ; Liver ; Liver cancer ; Liver Neoplasms - drug therapy ; Liver Neoplasms - genetics ; Liver Neoplasms - pathology ; Metabolic disorders ; Oligonucleotide Array Sequence Analysis ; Pathogenesis ; Peroxisome proliferator-activated receptors ; Polyunsaturated fatty acids ; Serum - chemistry ; Serum - metabolism ; Transcription factors</subject><ispartof>Journal of cellular physiology, 2015-09, Vol.230 (9), p.2059-2066</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4192-9f150ee08bd9e1c378a37254d7c7b538dc8b0408496b525ba7db4bed981a75ea3</citedby><cites>FETCH-LOGICAL-c4192-9f150ee08bd9e1c378a37254d7c7b538dc8b0408496b525ba7db4bed981a75ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.24932$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.24932$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25639214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Rosa, Maria Caterina</creatorcontrib><creatorcontrib>Caputo, Mariella</creatorcontrib><creatorcontrib>Zirpoli, Hylde</creatorcontrib><creatorcontrib>Rescigno, Tania</creatorcontrib><creatorcontrib>Tarallo, Roberta</creatorcontrib><creatorcontrib>Giurato, Giorgio</creatorcontrib><creatorcontrib>Weisz, Alessandro</creatorcontrib><creatorcontrib>Torino, Gaetano</creatorcontrib><creatorcontrib>Tecce, Mario Felice</creatorcontrib><title>Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Serum composition is linked to metabolic diseases not only to understand their pathogenesis but also for diagnostic purposes. Quality and quantity of nutritional intake can affect disease risk and serum composition. It is then possible that diet derived serum components directly affect pathogenetic mechanisms. To identify involved factors, we evaluated the effect on gene expression of direct addition of dyslipidemic human serum samples to cultured human hepatoma cells (HepG2). Sera were selected on the basis of cholesterol level, considering this parameter as mostly linked to dietary intake. Cells were treated with 32 sera from hypercholesterolemic and normocholesterolemic subjects to identify differentially regulated mRNAs using DNA microarray analysis. We identified several mRNAs with the highest modulations in cells treated with dyslipidemic sera versus cells treated with normal sera. Since the two serum groups had variable polyunsaturated fatty acids (PUFAs) contents, selected mRNAs were further assessed for their regulation by docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA). Four genes resulted both affected by serum composition and PUFAs: 3‐hydroxy‐3‐methylglutaryl‐CoenzymeA synthase 2 (HMGCS2), glutathione S‐transferase alpha 1 (GSTA1), liver expressed antimicrobial peptide 2 (LEAP2) and apolipoprotein M (ApoM). HMGCS2 expression appears the most relevant and was also found modulated via transcription factors peroxysome proliferator activated receptor α (PPARα) and forkhead box O1 (FoxO1). Our data indicate that expression levels of the selected mRNAs, primarily of HMGCS2, could represent a reference of nutritional intake, PUFAs effects and dyslipidemic diseases pathogenesis. J. Cell. Physiol. 230: 2059–2066, 2015. © 2015 Wiley Periodicals, Inc.</description><subject>Antimicrobial Cationic Peptides - biosynthesis</subject><subject>Apolipoproteins</subject><subject>Apolipoproteins - biosynthesis</subject><subject>Apolipoproteins M</subject><subject>Arachidonic acid</subject><subject>Arachidonic Acid - administration & dosage</subject><subject>Blood Proteins - biosynthesis</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cholesterol</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnostic systems</subject><subject>Diet</subject><subject>Dietary intake</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>Docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - administration & dosage</subject><subject>Dyslipidemias - blood</subject><subject>Dyslipidemias - metabolism</subject><subject>Eicosapentaenoic acid</subject><subject>Eicosapentaenoic Acid - administration & dosage</subject><subject>Fatty acids</subject><subject>Fish oils</subject><subject>Forkhead protein</subject><subject>FOXO1 protein</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genes</subject><subject>Glutathione</subject><subject>Glutathione transferase</subject><subject>Glutathione Transferase - biosynthesis</subject><subject>Health risks</subject><subject>Hep G2 Cells</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Hydroxymethylglutaryl-CoA Synthase - biosynthesis</subject><subject>Lipocalins - biosynthesis</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - pathology</subject><subject>Metabolic disorders</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pathogenesis</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Polyunsaturated fatty acids</subject><subject>Serum - chemistry</subject><subject>Serum - metabolism</subject><subject>Transcription factors</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9PFTEQxxujkQd68B8wTTx5WGi37XZ7JA95oAQJQjg27XZW-9xftl1x_3urD7jpZeYwn_lMMl-E3lBySAkpj7bNdFhyxcpnaEWJkgWvRPkcrfKMFkpwuof2Y9wSQpRi7CXaK0XFVEn5CsVzB0PyrW9M8uOAxxZvYICIv0AHTfI_oVvwNXydO5PAYT_gs7k3ucJk0tgbvIaui9gu-CaASX2W4TufvuGTJXZ-8g5632RZMNgMDl_dnh7HV-hFa7oIrx_6Abo9_XCzPisuPm_O18cXRcOpKgvVUkEASG2dAtowWRsmS8GdbKQVrHZNbQknNVeVFaWwRjrLLThVUyMFGHaA3u28Uxh_zBCT3o5zGPJJTVVFqKqlqP9LVTXL_-RMZOr9jmrCGGOAVk_B9yYsmhL9JwSdQ9B_Q8js2wfjbHtwT-Tj1zNwtAPufQfLv0364_rqUVnsNnxM8Otpw4TvupJMCn13udHqEyWX12SjOfsNFdCeiQ</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>De Rosa, Maria Caterina</creator><creator>Caputo, Mariella</creator><creator>Zirpoli, Hylde</creator><creator>Rescigno, Tania</creator><creator>Tarallo, Roberta</creator><creator>Giurato, Giorgio</creator><creator>Weisz, Alessandro</creator><creator>Torino, Gaetano</creator><creator>Tecce, Mario Felice</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201509</creationdate><title>Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs</title><author>De Rosa, Maria Caterina ; Caputo, Mariella ; Zirpoli, Hylde ; Rescigno, Tania ; Tarallo, Roberta ; Giurato, Giorgio ; Weisz, Alessandro ; Torino, Gaetano ; Tecce, Mario Felice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4192-9f150ee08bd9e1c378a37254d7c7b538dc8b0408496b525ba7db4bed981a75ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antimicrobial Cationic Peptides - biosynthesis</topic><topic>Apolipoproteins</topic><topic>Apolipoproteins - biosynthesis</topic><topic>Apolipoproteins M</topic><topic>Arachidonic acid</topic><topic>Arachidonic Acid - administration & dosage</topic><topic>Blood Proteins - biosynthesis</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cholesterol</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnostic systems</topic><topic>Diet</topic><topic>Dietary intake</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>Docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - administration & dosage</topic><topic>Dyslipidemias - blood</topic><topic>Dyslipidemias - metabolism</topic><topic>Eicosapentaenoic acid</topic><topic>Eicosapentaenoic Acid - administration & dosage</topic><topic>Fatty acids</topic><topic>Fish oils</topic><topic>Forkhead protein</topic><topic>FOXO1 protein</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genes</topic><topic>Glutathione</topic><topic>Glutathione transferase</topic><topic>Glutathione Transferase - biosynthesis</topic><topic>Health risks</topic><topic>Hep G2 Cells</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Hydroxymethylglutaryl-CoA Synthase - biosynthesis</topic><topic>Lipocalins - biosynthesis</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - pathology</topic><topic>Metabolic disorders</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pathogenesis</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Polyunsaturated fatty acids</topic><topic>Serum - chemistry</topic><topic>Serum - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Rosa, Maria Caterina</creatorcontrib><creatorcontrib>Caputo, Mariella</creatorcontrib><creatorcontrib>Zirpoli, Hylde</creatorcontrib><creatorcontrib>Rescigno, Tania</creatorcontrib><creatorcontrib>Tarallo, Roberta</creatorcontrib><creatorcontrib>Giurato, Giorgio</creatorcontrib><creatorcontrib>Weisz, Alessandro</creatorcontrib><creatorcontrib>Torino, Gaetano</creatorcontrib><creatorcontrib>Tecce, Mario Felice</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Rosa, Maria Caterina</au><au>Caputo, Mariella</au><au>Zirpoli, Hylde</au><au>Rescigno, Tania</au><au>Tarallo, Roberta</au><au>Giurato, Giorgio</au><au>Weisz, Alessandro</au><au>Torino, Gaetano</au><au>Tecce, Mario Felice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2015-09</date><risdate>2015</risdate><volume>230</volume><issue>9</issue><spage>2059</spage><epage>2066</epage><pages>2059-2066</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Serum composition is linked to metabolic diseases not only to understand their pathogenesis but also for diagnostic purposes. Quality and quantity of nutritional intake can affect disease risk and serum composition. It is then possible that diet derived serum components directly affect pathogenetic mechanisms. To identify involved factors, we evaluated the effect on gene expression of direct addition of dyslipidemic human serum samples to cultured human hepatoma cells (HepG2). Sera were selected on the basis of cholesterol level, considering this parameter as mostly linked to dietary intake. Cells were treated with 32 sera from hypercholesterolemic and normocholesterolemic subjects to identify differentially regulated mRNAs using DNA microarray analysis. We identified several mRNAs with the highest modulations in cells treated with dyslipidemic sera versus cells treated with normal sera. Since the two serum groups had variable polyunsaturated fatty acids (PUFAs) contents, selected mRNAs were further assessed for their regulation by docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA). Four genes resulted both affected by serum composition and PUFAs: 3‐hydroxy‐3‐methylglutaryl‐CoenzymeA synthase 2 (HMGCS2), glutathione S‐transferase alpha 1 (GSTA1), liver expressed antimicrobial peptide 2 (LEAP2) and apolipoprotein M (ApoM). HMGCS2 expression appears the most relevant and was also found modulated via transcription factors peroxysome proliferator activated receptor α (PPARα) and forkhead box O1 (FoxO1). Our data indicate that expression levels of the selected mRNAs, primarily of HMGCS2, could represent a reference of nutritional intake, PUFAs effects and dyslipidemic diseases pathogenesis. J. Cell. Physiol. 230: 2059–2066, 2015. © 2015 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25639214</pmid><doi>10.1002/jcp.24932</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2015-09, Vol.230 (9), p.2059-2066 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_journals_1960198758 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antimicrobial Cationic Peptides - biosynthesis Apolipoproteins Apolipoproteins - biosynthesis Apolipoproteins M Arachidonic acid Arachidonic Acid - administration & dosage Blood Proteins - biosynthesis Carcinoma, Hepatocellular - drug therapy Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - pathology Cholesterol Deoxyribonucleic acid Diagnostic systems Diet Dietary intake DNA DNA microarrays Docosahexaenoic acid Docosahexaenoic Acids - administration & dosage Dyslipidemias - blood Dyslipidemias - metabolism Eicosapentaenoic acid Eicosapentaenoic Acid - administration & dosage Fatty acids Fish oils Forkhead protein FOXO1 protein Gene expression Gene Expression Regulation, Neoplastic - drug effects Genes Glutathione Glutathione transferase Glutathione Transferase - biosynthesis Health risks Hep G2 Cells Hepatoma Humans Hydroxymethylglutaryl-CoA Synthase - biosynthesis Lipocalins - biosynthesis Liver Liver cancer Liver Neoplasms - drug therapy Liver Neoplasms - genetics Liver Neoplasms - pathology Metabolic disorders Oligonucleotide Array Sequence Analysis Pathogenesis Peroxisome proliferator-activated receptors Polyunsaturated fatty acids Serum - chemistry Serum - metabolism Transcription factors |
title | Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Genes%20Selectively%20Regulated%20in%20Human%20Hepatoma%20Cells%20by%20Treatment%20With%20Dyslipidemic%20Sera%20and%20PUFAs&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=De%20Rosa,%20Maria%20Caterina&rft.date=2015-09&rft.volume=230&rft.issue=9&rft.spage=2059&rft.epage=2066&rft.pages=2059-2066&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.24932&rft_dat=%3Cproquest_cross%3E3694973381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683109435&rft_id=info:pmid/25639214&rfr_iscdi=true |